U matematici, krivulja ili kriva (koja se u starijim tekstovima naziva i kriva linija) je objekt sličan pravoj, ali ne mora biti prava.
Intuitivno, kriva se može smatrati tragom koji ostavlja pokretna tačka. Ovo je definicija koja se pojavila prije više od 2.000 godina u Euklidovim Elementima: "[Zakrivljena] linija[a] je […] prva vrsta količine, koja ima samo jednu dimenziju, naime dužinu, bez ikakve širine ni dubine, i nije ništa drugo do tok ili pokret tačke koja [ …] će od svog zamišljenog kretanja ostaviti neki trag u dužini, izuzet od bilo koje širine."[1]
Ova definicija krive je formalizovana u modernoj matematici kao: Kriva je slikaintervala do topološkog prostora pomoću a kontinuirane funkcije. U nekim kontekstima, funkcija koja definira krivulju naziva se parametriziranje, a kriva je parametrijska kriva. U ovom članku, ove krive se ponekad nazivaju „topološke krive“ kako bi se razlikovale od više ograničenih krivulja kao što je diferencijabilna kriva. Ova definicija obuhvata većinu krivulja koje se proučavaju u matematici; značajni izuzeci su krive nivoa (koje su unije krivih i izolovanih tačaka) i algebarska kriva. Krive nivoa i algebarske krive se ponekad nazivaju implicitne krive, pošto su općenito definisane implicitnim jednačinama.
Ipak, klasa topoloških krivulja je vrlo široka i sadrži neke krive koje ne izgledaju onako kako bi se moglo očekivati, ili se čak ne mogu nacrtati. Ovaj slučaj ima krivulja popunjavanja prostora i fraktalna kriva Da bi se osigurala veća regularnost, funkcija koja definira krivu često bi trebala biti diferencijabilna, a za krivu se tada kaže da je diferencirajuća kriva.
^ U sadašnjoj matematičkoj upotrebi, linija je ravna. Ranije su linije mogle biti ili zakrivljene ili ravne.
Reference
^In (rather old) French: "La ligne est la première espece de quantité, laquelle a tant seulement une dimension à sçavoir longitude, sans aucune latitude ni profondité, & n'est autre chose que le flux ou coulement du poinct, lequel […] laissera de son mouvement imaginaire quelque vestige en long, exempt de toute latitude." Pages 7 and 8 of Les quinze livres des éléments géométriques d'Euclide Megarien, traduits de Grec en François, & augmentez de plusieurs figures & demonstrations, avec la corrections des erreurs commises és autres traductions, by Pierre Mardele, Lyon, MDCXLV (1645).