P-адично число

3-адични цели числа и връзката им със съответните дуални групи на Понтрягин

Теорията на P-адичните числа е разработена от немския математик Курт Хензел през 1897 г. (p-adischen Zahlen). Неговият ученик, руският математик Александър М. Островски, доказва теорема (наречена по-късно на негово име), че множеството на рационалните числа може да се допълни до непрекъснато множество само по два начина – или като се използват ирационални числа, или P-адични числа.

Най-просто казано P-адично число се нарича рационално число, записано с основа просто число, т.е. като редица от остатъци по модул p, където p е просто число.

За основа може да се вземе кое да е просто число (освен 1) (както можем да запишем едно и също цяло число в осмична, 10на, 16на система съответно с основа 8,10,16, така можем да запишем едно реално число в P-адична система с основа 2,3,5 7 и т.н.).

Формалната дефиниция на понятието от теория на числата е: P-адично число[1] дефинира за фиксирано p което е просто число разширение на множеството на рационалните числа. Това разширение е попълване на полето на рационалните числа на база на P-адичната норма, определена на база делимостта на целите числа на p.

Цяло P-адично число за дадено Просто число p се нарича безкрайният ред по модул , където:

За разлика от реалните числа, множеството на P-адичните не е подредено, а геометрията на тяхна основа е не-Архимедова.

Тези числа се оказват извънредно полезни при решаването на някои сложни математически задачи, примерно в теория на числата при оценка решимостта на алгебричните уравнения.

По-късно P-адичните числа намират приложение и в квантовата физика, а разработените на тяхна база ултраметрични пространства на Марк Краснер и аделната формула на Фройнд-Витен – в квантовата механика.

Вижте също

Източници

  1. Чете се: пе-адично; съответно: две-адично, три-адично и т.н.
  • Kurt Hensel, Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung, Band 6, 1899, 6 (3): 83 – 88.
  • Introduction to p-adic numbers
  • Владимиров B.C., Волович И. В. „Суперанализ, 1. Дифференциальное исчисление“. ТМФ. 1984. Т. 59, № 1. С. 3 – 27; —, —. „Суперанализ, 2. Интегральное исчисление“. ТМФ. 1984. Т. 60, № 2, С. 169 – 198; —, —. „p-Адическая квантовая механика“. Доклады Акад. Наук СССР: Физика. 1988. Т. 302, № 2. С. 320 – 322; engl. version: Vladimirov V.S., Volovich I.V. P-adic quantum mechanics. Commun. Math. Phys. 1989. T. 123, C. 659 – 676; В. С. Владимиров, И. В. Волович, Е. И. Зеленов, „p-Адический анализ и математическая физика“, Наука, М., 1994; engl. version: V.S. Vladimirov, I.V. Volovich, Ye.I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1993
  • Khrennikov A. Yu. p-adic valued distributions and their applications to the mathematical physics. Dordreht: Kluwer Acad. Publ., 1994.
  • Volovich IV, p-adic string. Class. Quant. Grav. 1987. V. 4. P. 83 – 87.
  • С. В. Козырев, „Методы и приложения ультраметрического и p-адического анализа: от теории всплесков до биофизики“, Совр. пробл. матем., Вып. 12, МИАН, М., 2008
  • P. G. O. Freund, E. Witten, Adelic string amplitudes, Phys.Lett. B, 199 (1987), 191 – 194
  • К. Конрад Видеоуроци – Въведение в p-адическите числа Летняя школа „Современная математика“, 2014 г. Дубна