Kelompanggubug, Tambak, Gresik

5°45′32″S 112°38′40″E / 5.75891818965101°S 112.64452051658412°E / -5.75891818965101; 112.64452051658412

Kelompanggubug
Peta
Peta genah Désa Kelompanggubug
Negara Indonésia
PropinsiJawa Timur
KabupaténGresik
KecamatanTambak
Kodepos
61182
Kode Kéméndagri35.25.18.2007 Uah nilai ring Wikidata

Kelompanggubug (aksara Bali: dipoŋgo) inggih punika silih tunggil désa dinas sané magenah ring kecamatan Tambak ring wawengkon Kabupatén Gresik, Jawa Timur.[1][2][3]

Pustaka

  1. "Peraturan Menteri Dalam Negeri Nomor 137 Tahun 2017 tentang Kode dan Data Wilayah Administrasi Pemerintahan". Kementerian Dalam Negeri Républik Indonésia. Kaarsipin saking versi asli tanggal 29 Désémber 2018. Kaaksés 3 Oktober 2019.
  2. "Peraturan Menteri Dalam Negeri Nomor 72 Tahun 2019 tentang Perubahan atas Permendagri nomor 137 Tahun 2017 tentang Kode dan Data Wilayah Administrasi Pemerintahan". Kementerian Dalam Negeri Républik Indonésia. Kaarsipin saking versi asli (PDF) tanggal 25 Oktober 2019. Kaaksés 15 Januari 2020.
  3. Menteri Dalam Negeri Republik Indonesia (2022-02-14). "Keputusan Menteri Dalam Negeri Indonesia Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilayah Administrasi Pemerintahan dan Pulau tahun 2021" (PDF). Kementerian Dalam Negeri Republik Indonesia. Kaarsipin saking versi asli (PDF) tanggal 2022-08-07. Kaaksés 2022-12-29.

Pranala jaba

catetan: URL dados kauahin/ilang. Yening URL nenten aktip, dados kaapus saking lis.

Read other articles:

Konstantin XI Paleolog Dragaš Κωνσταντῖνος ΙΑ' ΠαλαιολόγοςKaisar dari Kekaisaran BizantiumKonstantinus XI PalaiologosBerkuasa6 Januari 1449 – 29 Mei 1453Penobatan6 Januari 1449PendahuluIoannes VIII PalaiologosPenerusJabatan dihapuskanKelahiran(1404-02-08)8 Februari 1404Kematian29 Mei 1453(1453-05-29) (umur 48)AyahManuel II PalaiologosIbuHelena DragašPasanganTheodora ToccoCaterina GattilusioAnakTidak adaAgamaOrtodoks Yunani Konstantinus XI Palaiologos Dragaš...

 

In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. (This is not the same as the Gauss map in differential geometry.) It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function. Relationship to the maps and continued fractions The Gauss map File:Gauss function The Gauss function (...

 

American radio personality and lawyer (1938–2018) Adrian CronauerCronauer in 1999BornAdrian Joseph Cronauer(1938-09-08)September 8, 1938Pittsburgh, Pennsylvania, U.S.DiedJuly 18, 2018(2018-07-18) (aged 79)Troutville, Virginia, U.S.[1]Resting placeSouthwest Virginia Veterans Cemetery, Dublin, Virginia, U.S.Alma materUniversity of Pittsburgh[2]Occupation(s)Radio personality, lawyerKnown forGood Morning, Vietnam (1987)Spouse Jeane Steppe ​ ​(m...

Chrysler 300Chrysler 300C 2012InformasiProdusenDaimlerChrysler (2005–2007)Chrysler LLC (2007–2009)Chrysler Group LLC (2009–2014)FCA Group LLC (2014–2021)Stellantis North America (2021–2023)Masa produksi2005–2023PerakitanBrampton, Ontario, Kanada[1] Graz, AustriaBeijing, ChinaPerancangRalph GillesFreeman ThomasBodi & rangkaKelasMobil eksekutifBentuk kerangkakonvertibel 4 pintu sedan 4 pintustation wagon 4 pintu (Eropa, Australia dan Amerika Latin)Tata letakMesin de...

 

Barfi!Poster rilis teatrikalSutradaraAnurag BasuProduserRonnie ScrewvalaSiddharth Roy KapurAnurag BasuDitulis olehAnurag BasuSkenarioAnurag BasuCeritaAnurag BasuTani BasuPemeranRanbir KapoorPriyanka ChopraIleana D'CruzSaurabh ShuklaAshish VidyarthiRoopa GangulyNaratorIleana D'CruzPenata musikPritamSinematograferRavi VarmanPenyuntingAkiv AliPerusahaanproduksiIshana MoviesDistributorUTV Motion PicturesTanggal rilis 14 September 2012 (2012-09-14) Durasi150 menit[1]NegaraIndiaB...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Kehicap-bentet selatan Clytorhynchus pachycephaloides Status konservasiRisiko rendahIUCN22707213 TaksonomiKerajaanAnimaliaFilumChordataKelasAvesOrdoPasseriformesFamiliMonarchidaeGenusClytorhynchusSpesiesClytorhynchus pachycephaloides Elliot, 1870 Subsp...

Sporting event delegationAustralia at the2017 World Aquatics ChampionshipsFlag of AustraliaFINA codeAUSNational federationSwimming AustraliaWebsiteswimming.org.auin Budapest, HungaryCompetitors83 in 6 sportsMedalsRanked 7th Gold 3 Silver 5 Bronze 4 Total 12 World Aquatics Championships appearances197319751978198219861991199419982001200320052007200920112013201520172019202220232024 Australia competed at the 2017 World Aquatics Championships in Budapest, Hungary from 14 to 30 July. Medalists Me...

 

2020年夏季奥林匹克运动会奥地利代表團奥地利国旗IOC編碼AUTNOC奧地利奧林匹克委員會網站www.olympia.at(德文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員75參賽項目21个大项旗手开幕式:托马斯·扎亚克(英语:Thomas Zajac)和塔尼娅·弗兰克(帆船)[1]闭幕式:安德烈亚斯·米勒(自行车)[2]...

 

1900年美國總統選舉 ← 1896 1900年11月6日 1904 → 447張選舉人票獲勝需224張選舉人票投票率73.2%[1] ▼ 6.1 %   获提名人 威廉·麥金利 威廉·詹寧斯·布賴恩 政党 共和黨 民主党 家鄉州 俄亥俄州 內布拉斯加州 竞选搭档 西奧多·羅斯福 阿德萊·史蒂文森一世 选举人票 292 155 胜出州/省 28 17 民選得票 7,228,864 6,370,932 得票率 51.6% 45.5% 總統選舉結果地圖,紅色代表�...

Pakistani film director (1937 - 2008) Pervez Malik پرویز ملکBorn1937Karachi, British IndiaDied18 November 2008 (aged 70-71)Islamabad, PakistanNationalityPakistaniOccupationFilm directorYears active1964 – 2008Awards 2 Nigar Awards in 1966 and in 1981 Pride of Performance Presidential Award in 1992 Pervez Malik (1937 – 18 November 2008) was a Pakistani film director. He was the director of Pakistan's first platinum jubilee film, Armaan (1966). He directed more than 20 f...

 

Rapidly rotating storm system Hurricane redirects here. For a strong tropical cyclone that occurs in the Atlantic Ocean, see Atlantic hurricane. For other uses, see Hurricane (disambiguation). Tropical Depression redirects here. For the band, see Tropical Depression (band). For the album, see The Mountain Goats discography § Split EPs. For technical reasons, Hurricane #1 redirects here. For the band, see Hurricane No. 1. Example of tropical cyclone Hurricane Florence in 2018 as viewed f...

 

Köppen climate classification types of Italy The climate of Italy is highly diverse. In most of the inland northern and central regions, the climate ranges from humid subtropical to humid continental and oceanic. The climate of the Po valley geographical region is mostly humid subtropical, with cool winters and hot summers.[1][2] The coastal areas of Liguria, Tuscany and most of the South experience a Mediterranean climate according to the Köppen climate classification. Bet...

Ahmad Fathi Sorourاحمد فتحى سرورSorour pada 2005 Ketua Majelis Rakyat MesirMasa jabatan13 Desember 1990 – 13 Februari 2011Ditunjuk olehMajelis RakyatPresidenHosni Mubarak Mohamed Hussein Tantawi ( sebagai Ketua Dewan Tertinggi Angkatan Bersenjata Mesir)Perdana MenteriAtef Sedki Kamal Ganzouri Atef Ebeid Ahmed Nazif Ahmed ShafikPendahuluRifaat el-MahgoubPenggantiSaad El-Katatni (2012) Informasi pribadiLahir(1932-07-09)9 Juli 1932Kegubernuran Qena, Kerajaan MesirMeninggal...

 

Republik MadagaskarRepoblikan'i Madagasikara (Malagasi) République de Madagascar (Prancis) Bendera Lambang Semboyan: Patrie, Liberté, Développement (Prancis) Tanindrazana, Fahafahana, Fandrosoana (Malagasi) (Terjemahan: Tanah air, Kebebasan, Pembangunan)[1]Lagu kebangsaan:  Ry Tanindrazanay malala ô!(Indonesia: Oh, Tanah Kesayangan Leluhur kita!)Perlihatkan BumiPerlihatkan peta AfrikaPerlihatkan peta BenderaLokasi  Madagaskar  (biru tua)– di Afrika&...

 

Halaman ini berisi artikel tentang aktris Amerika. Untuk perenang Olimpiade Australia, lihat Rachel Harris. Untuk orang dengan nama yang mirip, lihat Rachel Harris (disambiguasi). Rachael HarrisHarris di WonderCon 2017LahirRachael Elaine Harris12 Januari 1968 (umur 56)Worthington, Ohio, ASNama lainRachel HarrisAlmamaterOtterbein UniversityPekerjaanAktris, pelawakTahun aktif1992–sekarangSuami/istriAdam Paul ​ ​(m. 2003; c. 2008)​...

County of Norway This article is about the county in Norway. For the island in Kristiansund, see Innlandet (island). County in NorwayInnlandet County Innlandet fylkeCountyAtnsjøen and Rondane Coat of armsInnlandet within NorwayInnlandet CountyShow map of InnlandetInnlandet CountyShow map of NorwayCoordinates: 61°30′00″N 10°40′00″E / 61.5°N 10.666667°E / 61.5; 10.666667CountryNorwayCountyInnlandetDistrictEastern NorwayEstablished1 Jan 2020 • Pre...

 

Questa voce o sezione sull'argomento società calcistiche è ritenuta da controllare. Motivo: Che prove abbiamo che la società del 1945 non fosse nuova, ma erede della squadra prebellica? Partecipa alla discussione e/o correggi la voce. Segui i suggerimenti del progetto di riferimento. Atletico Piombino SSDCalcio I Neroazzurri, Il Topolino neroazzurro, Gli Acciaiati Segni distintiviUniformi di gara Casa Trasferta Terza divisa Colori sociali Nero, azzurro SimboliTopolino InnoForza Piomb...

 

General encyclopedia published in France from 1751 to 1772 This article is about the 18th-century French encyclopedia. For a definition of the term encyclopédie, see the Wiktionary entry encyclopédie. Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers The title page of the EncyclopédieAuthorNumerous contributors (edited by Denis Diderot and Jean le Rond d'Alembert)LanguageFrenchSubjectGeneralGenreReference encyclopediaPublisherAndré le Breton, Michel-Antoine D...

Geometrical-optical illusion An example of the Ponzo illusion. Both of the horizontal yellow lines are the same length. The Ponzo illusion is a geometrical-optical illusion that takes its name from the Italian psychologist Mario Ponzo (1882–1960). Ponzo never claimed to have discovered it, and it is indeed present in earlier work. Much confusion is present about this including many references to a paper that Ponzo published in 1911 on the Aristotle illusion. This is a tactile effect and it ...

 

Matrix in math with special properties In mathematics, a conference matrix (also called a C-matrix) is a square matrix C with 0 on the diagonal and +1 and −1 off the diagonal, such that CTC is a multiple of the identity matrix I. Thus, if the matrix has order n, CTC = (n−1)I. Some authors use a more general definition, which requires there to be a single 0 in each row and column but not necessarily on the diagonal.[1][2] Conference matrices first arose in connect...