ত্ৰিভুজ

ত্ৰিভুজ

এটা ত্ৰিভুজ
বাহু আৰু শীৰ্ষ
Schläfli symbol {৩} (সমবাহুৰ বাবে)
ক্ষেত্ৰফল বিভিন্ন প্ৰকাৰ
আন্তঃকোণ (ডিগ্ৰী) ৬০° (সমবাহুৰ বাবে)

সমতলীয় জ্যামিতিৰ ভাষাত তিনিটা বাহু বিশিষ্ট সীমাবদ্ধ ক্ষেত্ৰকে ত্ৰিভুজ বোলা হয়। দ্বি-মাত্ৰিক অংকত ত্ৰিভুজৰ তিনিটা কোণৰ সমষ্টি ১৮০° বা দুই সমকোণ। এটা সময়ত কেৱল ইউক্লিডীয় জ্যামিতিতেই ত্ৰিভুজৰ বিষয়ে আলোচনা কৰা হৈছিল। কিন্তু নিকোলাই লোবাচেভ্‌স্কি সহ অন্যান্য জ্যামিতি বিশেষজ্ঞসকলৰ অৱদানৰ ফলস্বৰূপে অসমতলীয় জ্যামিতিটো বৰ্তমানে ত্ৰিভুজৰ বিষয়ে আলোচনা কৰা হয়। এই ধৰণৰ অংকত ত্ৰিভুজৰ তিনিটা কোণৰ সমষ্টি দুই সমকোণ নহয়। অথচ ইউক্লিডীয় জ্যামিতিৰ মূল ভিত্তিতেই এই ধাৰণাটি গঢ় লৈছে।

প্ৰকাৰভেদ

বাহুৰ দৈৰ্ঘ্যৰ ভিত্তিত

বাহুৰ দৈৰ্ঘ্যৰ ভিত্তিত ত্ৰিভুজ তিনি প্ৰকাৰৰ হ’ব পাৰে। যেনে -

  • সমবাহু ত্ৰিভুজ - যাৰ তিনিটি বাহুৰ দৈৰ্ঘ্য সমান। (সমবাহু ত্ৰিভুজৰ ক্ষেত্ৰত প্ৰতিটো কোণৰ মান ৬০° হয়।
  • সমদ্বিবাহু ত্ৰিভুজ - যাৰ যিকোনো দুই বাহুৰ দৈৰ্ঘ্য সমান। (সমদ্বিবাহু ত্ৰিভুজৰ শীৰ্ষকোণ ৯০° হ’লে আন সমান দুইটি বিপৰীত কোণ ৪৫°কৈ হ’ব। )
  • বিষমবাহু ত্ৰিভুজ - যাৰ তিনিটা বাহুৰ দৈৰ্ঘ্য তিনি ধৰণৰ। (বিষমবাহু ত্ৰিভুজৰ তিনিওটা কোণেই এটা আনটোৰ পৰা পৃথক হয়।
Equilateral Triangle Isosceles triangle Scalene triangle
সমবাহুসমদ্বিবাহুবিষমবাহু

কোণৰ ভিত্তিত কৰা বিভাজন

কোণৰ ভিত্তিত ত্ৰিভুজ তিনি প্ৰকাৰৰ হ’ব পাৰে -

  • সমকোণী ত্ৰিভুজ - যাৰ যিকোনো এটি কোণ ১ সমকোণ বা ৯০°ৰ সমান।
  • সূক্ষ্ণকোণী ত্ৰিভুজ - যাৰ তিনিটি কোণেই সূক্ষ্ণকোণ
  • স্থূলকোণী ত্ৰিভুজ - যাৰ যিকোনো এটি কোণ স্থূলকোণ
Right triangle Obtuse triangle Acute triangle
সমকোণীস্থূলকোণীসূক্ষ্ণকোণী


ত্ৰিভুজৰ সাদৃশ্যতা

দুটা ত্ৰিভুজ সদৃশ হ'ব যদিহে- i) সিহঁতৰ অনুৰূপ কোণবোৰ সমান আৰু ii) সিহঁতৰ অনুৰূপ বাহুবোৰ একে অনুপাতত থাকে। যদি দুটা ত্ৰিভুজৰ অনুৰূপ কোণবিলাক সমান তেন্তে সিহঁত সমান কোণী বা সমকৌণীক ত্ৰিভুজ বোলে। বিখ্যাত গ্ৰীক গণিতজ্ঞ থেলছে দুটা সমকোণী ত্ৰিভুজৰ ক্ষেত্ৰত এটা গুৰুত্বপূৰ্ণ সত্য উল্লেখ কৰিছিল। সেইটো হ'ল- দুটা সমানকোণী ত্ৰিভুজৰ যিকোনো দুটা অনুৰূপ বাহুৰ অনুপাত সদায় একে। ত্ৰিভুজৰ সদৃশতা বুজিবলৈ '~' প্ৰতীক ব্যৱহাৰ কৰা হয়। দুটা সদৃশ ত্ৰিভুজৰ কালিৰ অনুপাত সিহঁতৰ অনুৰূপ বাহুৰ অনুপাতৰ বৰ্গৰ সমান।

তথ্য সংগ্ৰহ


বাহ্যিক সংযোগ