Zariski's lemma

In algebra, Zariski's lemma, proved by Oscar Zariski (1947), states that, if a field K is finitely generated as an associative algebra over another field k, then K is a finite field extension of k (that is, it is also finitely generated as a vector space).

An important application of the lemma is a proof of the weak form of Hilbert's Nullstellensatz:[1] if I is a proper ideal of (k an algebraically closed field), then I has a zero; i.e., there is a point x in such that for all f in I. (Proof: replacing I by a maximal ideal , we can assume is maximal. Let and be the natural surjection. By the lemma is a finite extension. Since k is algebraically closed that extension must be k. Then for any ,

;

that is to say, is a zero of .)

The lemma may also be understood from the following perspective. In general, a ring R is a Jacobson ring if and only if every finitely generated R-algebra that is a field is finite over R.[2] Thus, the lemma follows from the fact that a field is a Jacobson ring.

Proofs

Two direct proofs are given in Atiyah–MacDonald;[3][4] the one is due to Zariski and the other uses the Artin–Tate lemma. For Zariski's original proof, see the original paper.[5] Another direct proof in the language of Jacobson rings is given below. The lemma is also a consequence of the Noether normalization lemma. Indeed, by the normalization lemma, K is a finite module over the polynomial ring where are elements of K that are algebraically independent over k. But since K has Krull dimension zero and since an integral ring extension (e.g., a finite ring extension) preserves Krull dimensions, the polynomial ring must have dimension zero; i.e., .

The following characterization of a Jacobson ring contains Zariski's lemma as a special case. Recall that a ring is a Jacobson ring if every prime ideal is an intersection of maximal ideals. (When A is a field, A is a Jacobson ring and the theorem below is precisely Zariski's lemma.)

Theorem — [2] Let A be a ring. Then the following are equivalent.

  1. A is a Jacobson ring.
  2. Every finitely generated A-algebra B that is a field is finite over A.

Proof: 2. 1.: Let be a prime ideal of A and set . We need to show the Jacobson radical of B is zero. For that end, let f be a nonzero element of B. Let be a maximal ideal of the localization . Then is a field that is a finitely generated A-algebra and so is finite over A by assumption; thus it is finite over and so is finite over the subring where . By integrality, is a maximal ideal not containing f.

1. 2.: Since a factor ring of a Jacobson ring is Jacobson, we can assume B contains A as a subring. Then the assertion is a consequence of the next algebraic fact:

(*) Let be integral domains such that B is finitely generated as A-algebra. Then there exists a nonzero a in A such that every ring homomorphism , K an algebraically closed field, with extends to .

Indeed, choose a maximal ideal of A not containing a. Writing K for some algebraic closure of , the canonical map extends to . Since B is a field, is injective and so B is algebraic (thus finite algebraic) over . We now prove (*). If B contains an element that is transcendental over A, then it contains a polynomial ring over A to which φ extends (without a requirement on a) and so we can assume B is algebraic over A (by Zorn's lemma, say). Let be the generators of B as A-algebra. Then each satisfies the relation

where n depends on i and . Set . Then is integral over . Now given , we first extend it to by setting . Next, let . By integrality, for some maximal ideal of . Then extends to . Restrict the last map to B to finish the proof.

Notes

  1. ^ Milne 2017, Theorem 2.12.
  2. ^ a b Atiyah & MacDonald 1969, Ch 5. Exercise 25.
  3. ^ Atiyah & MacDonald 1969, Ch 5. Exercise 18.
  4. ^ Atiyah & MacDonald 1969, Proposition 7.9.
  5. ^ Zariski 1947, pp. 362–368.

Sources

  • Atiyah, Michael; MacDonald, Ian G. (1969). Introduction to Commutative Algebra. Addison-Wesley Series in Mathematics. Addison–Wesley. ISBN 0-201-40751-5.
  • Milne, James (19 March 2017). "Algebraic Geometry". Retrieved 1 February 2022.
  • Zariski, Oscar (April 1947). "A new proof of Hilbert's Nullstellensatz". Bulletin of the American Mathematical Society. 53 (4): 362–368. doi:10.1090/s0002-9904-1947-08801-7. MR 0020075.

Read other articles:

Keuskupan PassauDioecesis PassaviensisBistum PassauKatolik Katedral Santo Stefanus, PassauLokasiNegaraJermanProvinsi gerejawiMunich dan FreisingStatistikLuas5.442 km2 (2.101 sq mi)Populasi- Total- Katolik(per 2013)544.220483,650 (88.9%)InformasiDenominasiKatolik RomaGereja sui iurisGereja LatinRitusRitus RomaPendirian737KatedralKatedral Santo StefanusPelindungSt. Konrad dari ParzhamSt. Maksimilianus dari KeleiaSt. ValentinusKepemimpinan kiniPausFransiskusUsk...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2012. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber:&#...

 

 

Peta Eropa Timur tahun 200 SM yang menunjukan lokasi suku Getai di Sungai Donau. Getae (Yunani: Γέται) adalah nama yang diberikan bangsa Yunani untuk bangsa Dakia/Thrakia yang menghuni wilayah selatan Donau Hilir, yang kini merupakan Bulgaria Utara, serta bagian utara Donau Hilir, yang kini merupakan bagian dari Rumania. Sejak abad ke-7 SM, Getae telah berhubungan dengan Yunani. Getae pertama kali disebutkan dalam buku karya Herodotos, Historia. Referensi Wikimedia Commons memiliki m...

Catholic church in Rye, New York Church in Rye, New YorkChurch of the Resurrection40°58′32″N 73°41′07″W / 40.97556°N 73.68528°W / 40.97556; -73.68528LocationRye, New YorkDenominationCatholic ChurchWebsiteresrye.orgHistoryStatusParish churchFounded1880DedicationResurrection of JesusArchitectureStyleGothic RevivalCompleted1931AdministrationArchdioceseArchdiocese of New YorkClergyPastor(s)Rev. Msgr. Donald M. Dwyer The Church of the Resurrection is a Roman Cat...

 

 

Guilielmus XylanderL'érudit Guillaume Xylander.BiographieNaissance 26 décembre 1532AugsbourgDécès 10 février 1576 (à 43 ans)HeidelbergFormation Université Eberhard Karl de TübingenActivités Humaniste de la Renaissance, traducteur, poète, philologue classique, professeur d'universitéAutres informationsA travaillé pour Université de HeidelbergUniversité Humboldt de BerlinMouvement Renaissance allemandemodifier - modifier le code - modifier Wikidata Guilielmus (Guilhelmus) Xyl...

 

 

Evening daily tabloid newspaper published in Newport The South Wales ArgusSouth Wales Argus front page in July 2007TypeDaily newspaperFormatTabloidOwner(s)NewsquestPublisherNewsquest Media (Southern) Ltd.EditorGavin ThompsonFounded1892[1]Headquarters1st Floor, Chartist Tower, Upper Dock Street, Newport NP20 1DWCirculation3,623 (as of 2023)[2]Websitesouthwalesargus.co.uk The South Wales Argus is a daily tabloid newspaper published in Newport, South Wales. The Argus is distr...

Burkina Faso Uniformi di gara Casa Trasferta Sport Calcio Federazione FBFFédération Burkinabé de Foot-Ball Confederazione CAF Codice FIFA BFA Soprannome Les Étalons (Gli stalloni) Selezionatore Brama Traoré Record presenze Charles Kaboré (102) Capocannoniere Moumouni Dagano (34) Ranking FIFA 57º (21 dicembre 2023)[1] Esordio internazionale Alto Volta 5 - 4 Gabon Antananarivo, Madagascar; 14 aprile 1960 Migliore vittoria Alto Volta 5 - 1 Liberia Abidjan, Costa d'Avorio; 27 dice...

 

 

Fictional character from the Gerry and Sylvia Anderson television series Thunderbirds Fictional character John TracyThunderbirds characterThe classic puppet characterFirst appearanceTrapped in the Sky(30 September 1965)Created byGerry and Sylvia AndersonDesigned byMary Turner (puppet sculptor)[1]Portrayed byLex Shrapnel(2004 live-action film)Voiced byRay Barrett (original series)[2]Keith Alexander (Thunderbird 6)Thomas Brodie-Sangster(remake series)In-universe informationOccup...

 

 

العلاقات البوليفية الفيجية بوليفيا فيجي   بوليفيا   فيجي تعديل مصدري - تعديل   العلاقات البوليفية الفيجية هي العلاقات الثنائية التي تجمع بين بوليفيا وفيجي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بوليفي�...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2016) التهاب الجريبات الحكي أثناء الحمل (بالإنجليزية: Pruritic follicu...

 

 

Order of fishes SyngnathiformesTemporal range: Santonian–present[1] PreꞒ Ꞓ O S D C P T J K Pg N Trumpetfish (Aulostomus maculatus: Aulostomidae), head in natural pose Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii (unranked): Acanthomorpha Superorder: Acanthopterygii Clade: Percomorpha Order: Syngnathiformes Type species Syngnathus acusLinnaeus, 1758 Families See text The Syngnathiformes /ˈsɪŋ(ɡ)nəθɪfɔːrmiːz/ are an...

 

 

Russian politician In this name that follows Eastern Slavic naming customs, the patronymic is Makhsudovich and the family name is Hamitov. Amir HamitovMPАмир ХамитовMember of the State Duma (Party List Seat)IncumbentAssumed office 12 October 2021 Personal detailsBorn (1975-02-04) 4 February 1975 (age 49)Political partyNew PeopleEducationRANEPA Amir Makhsudovich Hamitov[note 1] (Russian: Амир Махсудович Хамитов; born 4 February 1975) is a Ru...

Bangladeshi music TV channel Television channel Gaan Bangla গান বাংলাCountryBangladeshBroadcast areaNationwideHeadquartersBaridhara, DhakaProgrammingPicture format1080i HDTV (downscaled to 16:9 576i for SDTV sets)OwnershipOwnerOne More Zero Group[1]Key peopleKaushik Hossain Taposh (Managing Director and CEO)[1]HistoryLaunched16 December 2013; 10 years ago (2013-12-16)LinksWebsitewww.gaanbangla.tv Gaan Bangla (Bengali: গান বাংলা...

 

 

1974 film by Durai Avalum Penn ThaaneTitle cardDirected byDuraiWritten byDuraiProduced byPandari BaiStarringSumithraR. MuthuramanM. R. R. VasuPandari BaiCinematographyManoharEdited byM. UmanathMusic byV. KumarProductioncompanySri Panduranga ProductionsRelease date 13 December 1974 (1974-12-13) Running time164 minutes[1]CountryIndiaLanguageTamil Avalum Penn Thaane (transl. She Too Is A Woman) is a 1974 Indian Tamil-language film written and directed by Durai in his...

 

 

Внешний вид Грианан Айлех в графстве Донегол, главной крепости Королевства Айлех Короли Айлеха — правители одноимённого королевства из рода Кенел Эогайн. Принадлежали к династии Северных Уи Нейллов и вели своё название от крепости Грианан Айлеха (ир. Grianan Ailigh), городи...

概况 使用者  中华人民共和国前级 003型航空母舰建造中 未知规划数 未知完成数 0现役数 0 技术数据艦型 航空母舰排水量 110,000餘吨[1][2]動力來源 核动力速度 30节以上[3]續航距離 无限艦載機 70至100餘架直升机、固定翼战斗机[4](包括48~60架歼-15及歼-35型号的歼击机、4~6架空警-600预警机、反潜直升机和隐身无人机)[5]飞行设施 机库 004型航空�...

 

 

RembokenKecamatanPeta lokasi Kecamatan RembokenNegara IndonesiaProvinsiSulawesi UtaraKabupatenMinahasaKode Kemendagri71.02.08 Kode BPS7102200 Desa/kelurahan11 Remboken adalah sebuah kecamatan di Kabupaten Minahasa, Sulawesi Utara, Indonesia. Kecamatan ini terletak pada ketinggian kurang lebih 700 meter dpl. Temperaturnya rata-rata maksimum 23 °C dan minimum 15 °C. Batas wilayah Berikut merupakan batas wilayah Kecamatan Remboken: Utara Kota Tomohon Timur Kecamatan Tondano Sela...

 

 

Ševcik Quartet The Ševčík-Lhotský String Quartet was a well-known Czech musical ensemble that was founded as the Ševčík Quartet at Warsaw in 1903 that continued to the 1930s. Personnel The founding members of the quartet were: 1st violin: Bohuslav Lhotský 2nd violin: Karel Procházka viola: Karel Moravec violoncello: Bedrich Váska (until 1911), succeeded by Ladislav Zelenka (until 1914), and by Antonio Fingerland. Origins Bohuslav Lhotský, Karel Procházka and Karel Moravec were al...

Medieval Italian governing body Signore redirects here. For the honorific, see Italian honorifics. For the village in India, see Signore, Udaipurwati. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Signoria – news · newspapers · books · scholar · JSTOR (October 2020) (Learn how and when to remove this messa...

 

 

Early 20th-century arms race between the United Kingdom and Germany Events leading to World War I Unification of Germany 1866–1871 Franco-Prussian War 1870–1871 Second Concert of Europe 1871 Great Eastern Crisis 1875–1878 Campaign in Bosnia 1878 Dual Alliance 1879 Boer Wars 1880–1902 Austro–Serbian Alliance 1881–1903 Triple Alliance 1882 Berlin Conference 1884 Bulgarian Crisis 1885–1888 Reinsurance Treaty 1887–1890 Franco-Russian Alliance 1894 First Sino-Japanese War 1894–18...