Zak transform

In mathematics, the Zak transform[1][2] (also known as the Gelfand mapping) is a certain operation which takes as input a function of one variable and produces as output a function of two variables. The output function is called the Zak transform of the input function. The transform is defined as an infinite series in which each term is a product of a dilation of a translation by an integer of the function and an exponential function. In applications of Zak transform to signal processing the input function represents a signal and the transform will be a mixed timefrequency representation of the signal. The signal may be real valued or complex-valued, defined on a continuous set (for example, the real numbers) or a discrete set (for example, the integers or a finite subset of integers). The Zak transform is a generalization of the discrete Fourier transform.[1][2]

The Zak transform had been discovered by several people in different fields and was called by different names. It was called the "Gelfand mapping" because Israel Gelfand introduced it in his work on eigenfunction expansions. The transform was rediscovered independently by Joshua Zak in 1967 who called it the "k-q representation". There seems to be a general consensus among experts in the field to call it the Zak transform, since Zak was the first to systematically study that transform in a more general setting and recognize its usefulness.[1][2]

Continuous-time Zak transform: Definition

In defining the continuous-time Zak transform, the input function is a function of a real variable. So, let f(t) be a function of a real variable t. The continuous-time Zak transform of f(t) is a function of two real variables one of which is t. The other variable may be denoted by w. The continuous-time Zak transform has been defined variously.

Definition 1

Let a be a positive constant. The Zak transform of f(t), denoted by Za[f], is a function of t and w defined by[1]

.

Definition 2

The special case of Definition 1 obtained by taking a = 1 is sometimes taken as the definition of the Zak transform.[2] In this special case, the Zak transform of f(t) is denoted by Z[f].

.

Definition 3

The notation Z[f] is used to denote another form of the Zak transform. In this form, the Zak transform of f(t) is defined as follows:

.

Definition 4

Let T be a positive constant. The Zak transform of f(t), denoted by ZT[f], is a function of t and w defined by[2]

.

Here t and w are assumed to satisfy the conditions 0 ≤ tT and 0 ≤ w ≤ 1/T.

Example

The Zak transform of the function

is given by

where denotes the smallest integer not less than (the ceil function).

Properties of the Zak transform

In the following it will be assumed that the Zak transform is as given in Definition 2.

1. Linearity

Let a and b be any real or complex numbers. Then

2. Periodicity

3. Quasi-periodicity

4. Conjugation

5. Symmetry

If f(t) is even then
If f(t) is odd then

6. Convolution

Let denote convolution with respect to the variable t.

Inversion formula

Given the Zak transform of a function, the function can be reconstructed using the following formula:

Discrete Zak transform: Definition

Let be a function of an integer variable (a sequence). The discrete Zak transform of is a function of two real variables, one of which is the integer variable . The other variable is a real variable which may be denoted by . The discrete Zak transform has also been defined variously. However, only one of the definitions is given below.

Definition

The discrete Zak transform of the function where is an integer variable, denoted by , is defined by

Inversion formula

Given the discrete transform of a function , the function can be reconstructed using the following formula:

Applications

The Zak transform has been successfully used in physics in quantum field theory,[3] in electrical engineering in time-frequency representation of signals, and in digital data transmission. The Zak transform has also applications in mathematics. For example, it has been used in the Gabor representation problem.

References

  1. ^ a b c d "Zak transform". Encyclopedia of Mathematics. Retrieved 15 December 2014.
  2. ^ a b c d e Alexander D. Poularikas, ed. (2010). Transforms and Applications Handbook (3rd ed.). CRC Press. pp. 16.1 – 16.21. ISBN 978-1-4200-6652-4.
  3. ^ J. Klauder, B.S. Skagerstam (1985). Coherent States. World Scientific.

Read other articles:

Pour les articles homonymes, voir Premier-Avril. Éphémérides Avril 1er 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30           1er mars 1er mai Chronologies thématiques Croisades Ferroviaires Sports Disney Anarchisme Catholicisme Abréviations / Voir aussi (° 1852) = né en 1852 († 1885) = mort en 1885 a.s. = calendrier julien n.s. = calendrier grégorien Calendrier Calendrier perpétuel Liste de calendriers Naissances du jour ...

 

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa Pashayi زبان پشه‌ای zabân Pashhay Pashai Dituturkan diAfghanistanEtnisOrang PashayiPenutur400 (2000–2011)[1] Rumpun bahasaIndo-Eropa Indo-IranianIndo-AryanDardicPashayi Sistem penulisanAlfabet PersiaKode bahasaISO 639-3Mencakup:aee – Timur lautglh – Timur lautpsi – Bara...

 

Globalisasi Budaya Demokratis Ekonomi Historis Garis besar Istilah Portal Studi Commons Kategorilbs Fisikawan teori Albert Einstein adalah contoh pelarian modal manusia akibat perubahan politik. Ia pindah ke Amerika Serikat untuk menghindari penindasan Nazi. Pelarian modal manusia, kadang disebut pengurasan keterampilan (Inggris: brain draincode: en is deprecated ), mengacu pada perpindahan orang-orang pintar dan terdidik demi mencari upah atau kondisi kerja yang lebih baik sehingga negara as...

Artikel ini bukan mengenai Paul Rand atau Ron Paul. Rand Paul Senator Amerika Serikat dari KentuckyPetahanaMulai menjabat 3 Januari 2011Menjabat bersama Mitch McConnell PendahuluJim BunningPenggantiPetahana Informasi pribadiLahirRandal Howard Paul7 Januari 1963 (umur 61)Pittsburgh, Pennsylvania, Amerika SerikatPartai politikRepublikSuami/istriKelley Ashby ​(m. 1990)​HubunganRon Paul (Ayah)Anak3Alma materUniversitas BaylorUniversitas DukeTanda tang...

 

Hamilton, BermudaKotaJalanan utama di Hamilton.Peta letak kota Hamilton di wilayah Bermuda.Koordinat: 32°17′35″N 64°46′55″W / 32.293°N 64.782°W / 32.293; -64.782Koordinat: 32°17′35″N 64°46′55″W / 32.293°N 64.782°W / 32.293; -64.782Negara Britania RayaWilayah Seberang Laut BermudaParokiPembrokeDidirikan1790Pemerintahan • WalikotaCharles R. Gosling[2]Luas • Total0,28 sq mi (70&...

 

Swedish multinational manufacturing company This article is about the Volvo Group (AB Volvo). For the separate manufacturer of passenger automobiles, see Volvo Cars. For other uses, see Volvo (disambiguation). AB VolvoCompany typeAktiebolagTraded asNasdaq Stockholm: VOLV A, Nasdaq Stockholm: VOLV BISINSE0000115446IndustryAutomotiveFounded1927; 97 years ago (1927)FoundersAssar Gabrielsson and Gustav LarsonHeadquartersGothenburg, SwedenArea servedWorldwideKey peopleC...

Франц Саксен-Кобург-Заальфельдскийнем. Franz von Sachsen-Coburg-Saalfeld герцог Саксен-Кобург-Заальфельдский 8 сентября 1800 — 9 декабря 1806 Предшественник Эрнст Фридрих Саксен-Кобург-Заальфельдский Преемник Эрнст I Саксен-Кобург-Заальфельдский Рождение 15 июля 1750(1750-07-15)Кобург, Сакс...

 

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Мат...

此條目可参照外語維基百科相應條目来扩充。若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 Osagyefo克瓦米·恩克鲁玛第三届非洲联盟主席任期1965年10月21日—1966年2月24日前任贾迈勒·阿卜杜-纳赛尔继任约瑟夫·亚瑟·�...

 

Paolo ZanettiPaolo Zanetti ai tempi dell'AscoliNazionalità Italia Altezza186 cm Peso82 kg Calcio RuoloAllenatore (ex centrocampista) Termine carriera18 novembre 2014 - giocatore CarrieraGiovanili 1997-2000 Vicenza Squadre di club1 2000-2003 Vicenza45 (1)2003-2006 Empoli52 (2)2006-2007 Ascoli29 (1)2007-2010 Torino57 (1)2010→  Atalanta2 (0)2010-2011 Torino15 (0)2011-2012 Grosseto14 (0)2012-2013 Sorrento23 (1)[1]2013-2014 Reggiana...

 

Grouping of Irish myths Cuchulain in Battle, illustration by J. C. Leyendecker in T. W. Rolleston's Myths & Legends of the Celtic Race, 1911 Topics in the Ulster Cycle Ulster characters Amergin mac EccitAthirneBlaí BriuguBriccriuCairbre CuanachCathbadCeltcharCethern mac FintainConall CernachConchobar mac NessaCondere mac EchachCruinniucCú ChulainnCulannCúscraidDáire mac FiachnaDeichtineDeirdreÉogan mac DurthachtFedlimid mac DaillFergus mac LetiFindchóemFolloman mac ConchobairFurbaid...

Chinese Communist unit (1937–1947) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Eighth Route Army – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this message) Eighth Route ArmyEighth Route Army fighting on the Futuyu Great Wall, Laiyuan, Hebei, 1938. Photograp...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يونيو 2023) التناتجية هو أحد المبادئ الرئيسية للمنهج العلمي، ويشير إلى قدرة اختبار ما أو ت�...

 

劉贊周个人资料字字典文出生光緒三十二年三月初七日(1906年3月31日)逝世1998年12月16日(1998歲—12—16)(92歲)配偶丁乃媛亲属丁乃揚 劉贊周(1906年3月31日—1998年12月16日),字典文。遼北省梨樹縣人,原籍直隸河間縣。民國37年(1948年)在遼北省選區當選第一屆立法委員 生平[1][2][3][4][5][6][7] 日本九州帝國大學醫學部醫學博士 南�...

  关于与「步兵」標題相近或相同的条目页,請見「步兵 (消歧義)」。 战争与軍事 軍事史 史前戰爭 古代戰爭(英语:Ancient warfare) 中世纪战争 近代戰爭(英语:Early modern warfare) 現代戰爭(英语:Modern warfare) 工業戰(英语:Industrial warfare) 第四代戰爭 戰場 陸戰 空戰 海战 認知作戰 資訊情報 資通訊安全 心理战 電磁波段 太空 武器 裝甲部隊 火炮 飛彈 機械化部...

 

Hammersley Wild AreaIUCN category III (natural monument or feature)Location of Hammersley Wild Area in PennsylvaniaLocationPotter and Clinton, Pennsylvania, United StatesCoordinates41°30′47″N 77°52′48″W / 41.51306°N 77.88000°W / 41.51306; -77.88000Area30,253 acres (122.43 km2)[1]Established2004[1]Named forHammersley Fork, a tributary of Kettle CreekGoverning bodyPennsylvania Department of Conservation and Natural Resources Hammersl...

 

Questa voce sull'argomento registi francesi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Questa voce è orfana, ovvero priva di collegamenti in entrata da altre voci. Inseriscine almeno uno pertinente e utile e rimuovi l'avviso. Segui i suggerimenti del progetto di riferimento. Mourad Laffitte Mourad Laffitte (Montpellier, 16 dicembre 1965) è un regista e sceneggiatore francese, le sue opere riguardano la storia del sindacalismo francese e la Resi...

Pour les articles homonymes, voir Piranesi. Giovanni Battista PiranesiPortrait posthume par Pietro Labruzzi (1779)Naissance 4 octobre 1720Mogliano Veneto, près de Trévise, République de VeniseDécès 9 novembre 1778 (à 58 ans)Rome,  États pontificauxSépulture RomePériode d'activité 1740-1778Autres noms PiranèseActivité graveur et architecteMaître Giuseppe VasiÉlève Francesco PiranesiMouvement Néo-classicismeEnfants Laura PiranesiFrancesco PiranesiPietro Piranesi (d)Di...

 

秋田犬 愛称 日本秋田犬 原産地  日本(秋田県) 特徴 体重 オス 60–90 lbs (27–41 kg) メス 50–80 lbs (23–36 kg) 体高 オス 25–27 in (64–69 cm) メス 23–25 in (58–64 cm) 外被 ダブルコート 毛色 赤、黒虎、赤虎、霜降り虎、白、胡麻、黒。犬の遺伝的変異体の腹部に白い毛皮が付いているものはすべて、黒とグレーを含むことができる 出産数 3-12 匹、平均 7-8 匹 寿命 10 年 主�...