His research deals with, among other things, what he calls the "infinitesimal Hilbert's sixteenth problem", which asks what one can say about the number and location of the boundary cycles of planar polynomial vector fields. The problem is not yet completely solved. Ilyashenko attacked the problem using new techniques of complex analysis (such as functional cochains).[3] He proved that planar polynomial vector fields have only finitely many limit cycles. Jean Écalle independently proved the same result, and an earlier attempted proof by Henri Dulac (in 1923) was shown to be defective by Ilyashenko in the 1970s.[3]
He was an Invited Speaker of the ICM in 1978 at Helsinki and in 1990 with talk Finiteness theorems for limit cycles at Kyoto. In 2017 he was elected a Fellow of the American Mathematical Society.
Selected publications
Finiteness theorems for limit cycles, American Mathematical Society Translations, 1991[4] (also published in Russian Mathematical Surveys, 45, 1990, 143–200)
as editor: Nonlinear Stokes Phenomena, Advances in Soviet Mathematics 14, AMS 1993
as editor with Christiane Rousseau: Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, Proceedings of a NATO seminar, Montreal, 2002, Kluwer, 2004
with Anton Gorodetski: Certain new robust properties of invariant sets and attractors of dynamical systems, Functional Analysis and Applications, vol. 33, no. 2, 1999, pp. 16–32. doi:10.1007/BF02465190
with G. Buzzard and S. Hruska: Kupka-Smale theorem for polynomial automorphisms of and persistence of heteroclinic intersections, Inventiones Mathematicae, vol. 161, 2005, pp. 45–89 doi:10.1007/s00222-004-0418-8