Whittaker function
In mathematics, a solution to a modified form of the confluent hypergeometric equation
Plot of the Whittaker function M k,m(z) with k=2 and m=1 / 2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
In mathematics, a Whittaker function is a special solution of Whittaker's equation , a modified form of the confluent hypergeometric equation introduced by Whittaker (1903 ) to make the formulas involving the solutions more symmetric. More generally, Jacquet (1966 , 1967 ) introduced Whittaker functions of reductive groups over local fields , where the functions studied by Whittaker are essentially the case where the local field is the real numbers and the group is SL2 (R ).
Whittaker's equation is
d
2
w
d
z
2
+
(
− − -->
1
4
+
κ κ -->
z
+
1
/
4
− − -->
μ μ -->
2
z
2
)
w
=
0.
{\displaystyle {\frac {d^{2}w}{dz^{2}}}+\left(-{\frac {1}{4}}+{\frac {\kappa }{z}}+{\frac {1/4-\mu ^{2}}{z^{2}}}\right)w=0.}
It has a regular singular point at 0 and an irregular singular point at ∞.
Two solutions are given by the Whittaker functions M κ,μ (z ), W κ,μ (z ), defined in terms of Kummer's confluent hypergeometric functions M and U by
M
κ κ -->
,
μ μ -->
(
z
)
=
exp
-->
(
− − -->
z
/
2
)
z
μ μ -->
+
1
2
M
(
μ μ -->
− − -->
κ κ -->
+
1
2
,
1
+
2
μ μ -->
,
z
)
{\displaystyle M_{\kappa ,\mu }\left(z\right)=\exp \left(-z/2\right)z^{\mu +{\tfrac {1}{2}}}M\left(\mu -\kappa +{\tfrac {1}{2}},1+2\mu ,z\right)}
W
κ κ -->
,
μ μ -->
(
z
)
=
exp
-->
(
− − -->
z
/
2
)
z
μ μ -->
+
1
2
U
(
μ μ -->
− − -->
κ κ -->
+
1
2
,
1
+
2
μ μ -->
,
z
)
.
{\displaystyle W_{\kappa ,\mu }\left(z\right)=\exp \left(-z/2\right)z^{\mu +{\tfrac {1}{2}}}U\left(\mu -\kappa +{\tfrac {1}{2}},1+2\mu ,z\right).}
The Whittaker function
W
κ κ -->
,
μ μ -->
(
z
)
{\displaystyle W_{\kappa ,\mu }(z)}
is the same as those with opposite values of μ , in other words considered as a function of μ at fixed κ and z it is even functions . When κ and z are real, the functions give real values for real and imaginary values of μ . These functions of μ play a role in so-called Kummer spaces .[ 1]
Whittaker functions appear as coefficients of certain representations of the group SL2 (R ), called Whittaker models .
References
Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 13" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. pp. 504, 537. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 . See also chapter 14 .
Bateman, Harry (1953), Higher transcendental functions (PDF) , vol. 1, McGraw-Hill, archived from the original (PDF) on 2011-08-11, retrieved 2011-07-30 .
Brychkov, Yu.A.; Prudnikov, A.P. (2001) [1994], "Whittaker function" , Encyclopedia of Mathematics , EMS Press .
Daalhuis, Adri B. Olde (2010), "Whittaker function" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Jacquet, Hervé (1966), "Une interprétation géométrique et une généralisation P-adique des fonctions de Whittaker en théorie des groupes semi-simples", Comptes Rendus de l'Académie des Sciences, Série A et B , 262 : A943–A945, ISSN 0151-0509 , MR 0200390
Jacquet, Hervé (1967), "Fonctions de Whittaker associées aux groupes de Chevalley" , Bulletin de la Société Mathématique de France , 95 : 243–309, doi :10.24033/bsmf.1654 , ISSN 0037-9484 , MR 0271275
Rozov, N.Kh. (2001) [1994], "Whittaker equation" , Encyclopedia of Mathematics , EMS Press .
Slater, Lucy Joan (1960), Confluent hypergeometric functions , Cambridge University Press , MR 0107026 .
Whittaker, Edmund T. (1903), "An expression of certain known functions as generalized hypergeometric functions", Bulletin of the A.M.S. , 10 (3), Providence, R.I.: American Mathematical Society : 125–134, doi :10.1090/S0002-9904-1903-01077-5
Further reading
Hatamzadeh-Varmazyar, Saeed; Masouri, Zahra (2012-11-01). "A fast numerical method for analysis of one- and two-dimensional electromagnetic scattering using a set of cardinal functions" . Engineering Analysis with Boundary Elements . 36 (11): 1631–1639. doi :10.1016/j.enganabound.2012.04.014 . ISSN 0955-7997 .
Gerasimov, A. A.; Lebedev, Dmitrii R.; Oblezin, Sergei V. (2012). "New integral representations of Whittaker functions for classical Lie groups" . Russian Mathematical Surveys . 67 (1): 1–92. arXiv :0705.2886 . Bibcode :2012RuMaS..67....1G . doi :10.1070/RM2012v067n01ABEH004776 . ISSN 0036-0279 .
Baudoin, Fabrice; O'Connell, Neil (2011). "Exponential functionals of brownian motion and class-one Whittaker functions" . Annales de l'Institut Henri Poincaré, Probabilités et Statistiques . 47 (4): 1096–1120. arXiv :0809.2506 . Bibcode :2011AIHPB..47.1096B . doi :10.1214/10-AIHP401 . S2CID 113388 .
McKee, Mark (April 2009). "An Infinite Order Whittaker Function" . Canadian Journal of Mathematics . 61 (2): 373–381. doi :10.4153/CJM-2009-019-x . ISSN 0008-414X . S2CID 55587239 .
Mathai, A. M.; Pederzoli, Giorgio (1997-03-01). "Some properties of matrix-variate Laplace transforms and matrix-variate Whittaker functions" . Linear Algebra and Its Applications . 253 (1): 209–226. doi :10.1016/0024-3795(95)00705-9 . ISSN 0024-3795 .
Whittaker, J. M. (May 1927). "On the Cardinal Function of Interpolation Theory" . Proceedings of the Edinburgh Mathematical Society . 1 (1): 41–46. doi :10.1017/S0013091500007318 . ISSN 1464-3839 .
Cherednik, Ivan (2009). "Whittaker Limits of Difference Spherical Functions" . International Mathematics Research Notices . 2009 (20): 3793–3842. arXiv :0807.2155 . doi :10.1093/imrn/rnp065 . ISSN 1687-0247 . S2CID 6253357 .
Slater, L. J. (October 1954). "Expansions of generalized Whittaker functions" . Mathematical Proceedings of the Cambridge Philosophical Society . 50 (4): 628–631. Bibcode :1954PCPS...50..628S . doi :10.1017/S0305004100029765 . ISSN 1469-8064 . S2CID 122348447 .
Etingof, Pavel (1999-01-12). "Whittaker functions on quantum groups and q-deformed Toda operators". arXiv :math/9901053 .
McNamara, Peter J. (2011-01-15). "Metaplectic Whittaker functions and crystal bases" . Duke Mathematical Journal . 156 (1): 1–31. arXiv :0907.2675 . doi :10.1215/00127094-2010-064 . ISSN 0012-7094 . S2CID 979197 .
Mathai, A. M.; Pederzoli, Giorgio (1998-01-15). "A whittaker function of matrix argument" . Linear Algebra and Its Applications . 269 (1): 91–103. doi :10.1016/S0024-3795(97)00059-1 . ISSN 0024-3795 .
Frenkel, E.; Gaitsgory, D.; Kazhdan, D.; Vilonen, K. (1998). "Geometric realization of Whittaker functions and the Langlands conjecture" . Journal of the American Mathematical Society . 11 (2): 451–484. arXiv :alg-geom/9703022 . doi :10.1090/S0894-0347-98-00260-4 . ISSN 0894-0347 . S2CID 13221400 .