Wheat and chessboard problem

By the time that the fifth square is reached on the chessboard, the board contains a total of 31, or , grains of wheat.

The wheat and chessboard problem (sometimes expressed in terms of rice grains) is a mathematical problem expressed in textual form as:

If a chessboard were to have wheat placed upon each square such that one grain were placed on the first square, two on the second, four on the third, and so on (doubling the number of grains on each subsequent square), how many grains of wheat would be on the chessboard at the finish?

The problem may be solved using simple addition. With 64 squares on a chessboard, if the number of grains doubles on successive squares, then the sum of grains on all 64 squares is: 1 + 2 + 4 + 8 + ... and so forth for the 64 squares. The total number of grains can be shown to be 264−1 or 18,446,744,073,709,551,615 (eighteen quintillion, four hundred forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion, seven hundred nine million, five hundred fifty-one thousand, six hundred and fifteen, over 1.4 trillion metric tons), which is over 2,000 times the annual world production of wheat.[1]

This exercise can be used to demonstrate how quickly exponential sequences grow, as well as to introduce exponents, zero power, capital-sigma notation, and geometric series. Updated for modern times using pennies and a hypothetical question such as "Would you rather have a million dollars or a penny on day one, doubled every day until day 30?", the formula has been used to explain compound interest. (Doubling would yield over one billion seventy three million pennies, or over 10 million dollars: 230−1=1,073,741,823).[2][3]

Origins

The problem appears in different stories about the invention of chess. One of them includes the geometric progression problem. The story is first known to have been recorded in 1256 by Ibn Khallikan.[4] Another version has the inventor of chess (in some tellings Sessa, an ancient Indian Minister) request his ruler give him wheat according to the wheat and chessboard problem. The ruler laughs it off as a meager prize for a brilliant invention, only to have court treasurers report the unexpectedly huge number of wheat grains would outstrip the ruler's resources. Versions differ as to whether the inventor becomes a high-ranking advisor or is executed.[5]

Macdonnell also investigates the earlier development of the theme.[6]

[According to al-Masudi's early history of India], shatranj, or chess was invented under an Indian king, who expressed his preference for this game over backgammon. [...] The Indians, he adds, also calculated an arithmetical progression with the squares of the chessboard. [...] The early fondness of the Indians for enormous calculations is well known to students of their mathematics, and is exemplified in the writings of the great astronomer Āryabaṭha (born 476 A.D.). [...] An additional argument for the Indian origin of this calculation is supplied by the Arabic name for the square of the chessboard, (بيت, "beit"), 'house'. [...] For this has doubtless a historical connection with its Indian designation koṣṭhāgāra, 'store-house', 'granary' [...].

Solutions

The sum of powers of two from zero up to a given positive integer power is 1 less than the next power of two (i.e. the next Mersenne number)

The simple, brute-force solution is just to manually double and add each step of the series:

= 1 + 2 + 4 + ..... + 9,223,372,036,854,775,808 = 18,446,744,073,709,551,615
where is the total number of grains.

The series may be expressed using exponents:

and, represented with capital-sigma notation as:

It can also be solved much more easily using:

A proof of which is:

Multiply each side by 2:

Subtract original series from each side:

The solution above is a particular case of the sum of a geometric series, given by

where is the first term of the series, is the common ratio and is the number of terms.

In this problem , and .

Thus,

for being any positive integer.


The exercise of working through this problem may be used to explain and demonstrate exponents and the quick growth of exponential and geometric sequences. It can also be used to illustrate sigma notation. When expressed as exponents, the geometric series is: 20 + 21 + 22  + 23 + ... and so forth, up to 263. The base of each exponentiation, "2", expresses the doubling at each square, while the exponents represent the position of each square (0 for the first square, 1 for the second, and so on.).

The number of grains is the 64th Mersenne number.

Second half of the chessboard

A chessboard with each square labeled with the number of wheat grains according to the problem. A red line divides the chessboard in half.
An illustration of Ray Kurzweil's second half of the chessboard principle. The letters are abbreviations for the SI metric prefixes.

In technology strategy, the "second half of the chessboard" is a phrase, coined by Ray Kurzweil,[7] in reference to the point where an exponentially growing factor begins to have a significant economic impact on an organization's overall business strategy. While the number of grains on the first half of the chessboard is large, the amount on the second half is vastly (232 > 4 billion times) larger.

The number of grains of wheat on the first half of the chessboard is 1 + 2 + 4 + 8 + ... + 2,147,483,648, for a total of 4,294,967,295 (232 − 1) grains, or about 279 tonnes of wheat (assuming 65 mg as the mass of one grain of wheat).[8]

The number of grains of wheat on the second half of the chessboard is 232 + 233 + 234 + ... + 263, for a total of 264 − 232 grains. This is equal to the square of the number of grains on the first half of the board, plus itself. The first square of the second half alone contains one more grain than the entire first half. On the 64th square of the chessboard alone, there would be 263 = 9,223,372,036,854,775,808 grains, more than two billion times as many as on the first half of the chessboard.

On the entire chessboard there would be 264 − 1 = 18,446,744,073,709,551,615 grains of wheat, weighing about 1,199,000,000,000 metric tons. This is over 1,600 times the global production of wheat (729 million metric tons in 2014 and 780.8 million tonnes in 2019).[9]

Use

Carl Sagan titled the second chapter of his final book "The Persian Chessboard" and wrote, referring to bacteria, that "Exponentials can't go on forever, because they will gobble up everything."[10] Similarly, The Limits to Growth uses the story to present suggested consequences of exponential growth: "Exponential growth never can go on very long in a finite space with finite resources."[11]

See also

References

  1. ^ In the period 2020–21 this was an estimated 772.64 million metric tonnes, "Global Wheat Production Statistics since 1990". Retrieved 2022-05-25.
  2. ^ "A Penny Doubled Every Day for 30 Days = $10.7M" – via www.bloomberg.com.
  3. ^ "Doubling Pennies". Mathforum.org. Retrieved 2017-08-09.
  4. ^ Clifford A. Pickover (2009), The Math Book: From Pythagoras to the 57th Dimension, New York : Sterling. ISBN 9781402757969. p. 102
  5. ^ Tahan, Malba (1993). The Man Who Counted: A Collection of Mathematical Adventures. New York: W.W. Norton & Co. pp. 113–115. ISBN 0393309347. Retrieved 2015-04-05.
  6. ^ Macdonell, A. A. (1898). "The Origin and Early History of Chess". Journal of the Royal Asiatic Society of Great Britain & Ireland. 30 (1): 117–141. doi:10.1017/S0035869X00146246. S2CID 163963500.
  7. ^ Kurzweil, Ray (1999). The Age of Spiritual Machines: When Computers Exceed Human Intelligence. New York: Penguin. p. 37. ISBN 0-670-88217-8. Retrieved 2015-04-06.
  8. ^ "Encyclopedia Britannica: Grain, unit of weight". 29 April 2004. Retrieved 2 March 2017.
  9. ^ "FAOSTAT". faostat3.fao.org. Archived from the original on 11 January 2019. Retrieved 2 March 2017.
  10. ^ Sagan, Carl (1997). Billions and Billions: Thoughts On Life And Death At the Brink Of The Millennium. New York: Ballantine Books. p. 17. ISBN 0-345-37918-7.
  11. ^ Meadows, Donella H., Dennis L. Meadows, Jørgen Randers, and William W. Behrens III (1972). The Limits to Growth, p. 21, at Google Books. New York: University Books. ISBN 0-87663-165-0. Retrieved 2015-04-05.

Read other articles:

Artikel ini bukan mengenai No Matter How I Look at It, It's You Guys' Fault I'm Not Popular!. Hey, I'm PopularGambar sampul manga volume pertama私がモテてどうすんだ(Watashi ga Motete Dōsunda)GenreKomedi romantis,[1] Harem terbalik[2] MangaPengarangJunkoPenerbitKodanshaPenerbit bahasa InggrisNA Crunchyroll (daring)Kodansha ComicsPenerbit bahasa IndonesiaM&C!MajalahBessatsu FriendDemografiShōjoTerbit11 Oktober 2013 – 13 Februari 2018Volume14 Drama audioRilis13 ...

 

 

Pengadilan Tinggi Agama BanjarmasinPTA BanjarmasinGambaran umumLingkungan peradilanPeradilan AgamaTingkatBandingYurisdiksiProvinsi Kalimantan SelatanPengajuan kasasi/PK keMahkamah Agung Republik IndonesiaJumlah hakim17 Hakim TinggiKetuaDrs. H. Helmy Thohir, M.H.AlamatLokasiJl. Bina Praja Timur Kompleks Perkantoran Provinsi Kalimantan Selatan, Banjarbaru, Kalimantan Selatan, Kota Banjarbaru, Kalimantan Selatan, IndonesiaTelp./Faks.Telp. 0511-3252319 , Fax. 0511-3253742Situs webSitus Resmi...

 

 

Daydream World TourTur oleh Mariah CareyDaydreamMulai7 Maret 1996 (1996-03-07)Berakhir23 Juni 1996 (1996-06-23)Putaran2Penampilan3 di Asia4 di EropaTotal 7Kronologi konser Mariah Carey Music Box Tour(1993) Daydream World Tour(1996) Butterfly World Tour(1998) Daydream World Tour adalah tur konser oleh artis rekaman asal Amerika, Mariah Carey dalam mempromosikan album platinum miliknya, Daydream. Tur dimulai pada tanggal 7 Maret 1996 di Tokyo, Jepang, dan berakhir di London, Inggris p...

RinascitaStato Italia LinguaItaliano Periodicitàmensile (1944-1962) settimanale (dal 1962) GenereSettimanale politico-culturale FondatorePalmiro Togliatti Fondazione1944 Chiusura18 febbraio 1991 SedeRoma EditoreSocietà Rinascita editoriale srl   Modifica dati su Wikidata · ManualeRinascita è stata una rivista italiana, in origine un mensile politico-culturale del Partito Comunista Italiano. Fu fondata da Palmiro Togliatti nel 1944. Indice 1 Storia del periodico 2 Direttori ...

 

 

1905 novel by L. Frank Baum Queen Zixi of Ix, or The Story of the Magic Cloak First book editionAuthorL. Frank BaumIllustratorFrederick RichardsonCountryUnited StatesLanguageEnglishSeriesOz booksGenreFantasy novelSet inForest of Burzee, Noland, IxPublisherSt. NicholasThe Century Company (book)Publication dateNovember 1904 – October 1905Media typePrint (Serial) Queen Zixi of Ix, or The Story of the Magic Cloak, is a children's book written by L. Frank Baum and illustrated by Freder...

 

 

Walther WA 2000 Walther WA 2000. Jenis Senapan runduk Negara asal  Jerman Barat Sejarah pemakaian Digunakan oleh Polisi Jerman[1] Sejarah produksi Tahun 1970s-1980an [1] Produsen Carl Walther GmbH [1] Diproduksi 1982-1988 [1] Jumlah produksi 176 [1] Spesifikasi Berat 6.95 kg (15.3 lb) tanpa peluru dan alat bidik optik[2] 7.35 kg (16.2 lb) dengan amunisi peluru, tanpa alat bidik optik [2] Panjang 905 mm (35.6 in) [...

تُمثّل سنترال بارك في مدينة نيويورك جزءًا من نظام بيئي ضمن بيئة حضريَّة. علم البيئة الحضرية علم البيئة الحضرية، وهي الدراسة العلمية لعلاقة الكائنات الحية مع بعضها البعض ومع محيطها في مجال المنطقة الحضرية. تُشير المنطقة الحضرية إلى البيئات التي تهيمن عليها المباني السكنية...

 

 

2012 studio album by FourplayEsprit De FourStudio album by FourplayReleasedSeptember 18, 2012 (2012-09-18)Studio Glenwood Place Studios (Burbank, California) KFP Studios (Bethlehem, Pennsylvania) Landmark Studios (Yokohama, Japan) GenreJazzLength54:56LabelHeads UpProducer Fourplay (Tracks 1-9) Bob James and Atsuko Yashima (Track 10) Fourplay chronology Let's Touch the Sky(2010) Esprit De Four(2012) Professional ratingsReview scoresSourceRatingAllmusic[1] Esprit ...

 

 

2010 video game 2010 video gameMass Effect 2Developer(s)BioWarePublisher(s)Electronic ArtsMicrosoft Game Studios[a]Director(s)Casey HudsonProducer(s)Jesse HoustonNathan PlewesDesigner(s)Preston WatamaniukProgrammer(s)David FalknerArtist(s)Derek WattsWriter(s)Mac WaltersDrew KarpyshynComposer(s)Jack WallJimmy HinsonSam HulickDavid KatesSeriesMass EffectEngineUnreal Engine 3Platform(s)WindowsXbox 360PlayStation 3Release January 26, 2010 Windows, Xbox 360NA: January 26, 2010AU: January 2...

Різдво в Японії Тип неофіційне святоДата 25 грудня  Різдво в Японії у Вікісховищі Різдво в Японії (яп. クリスマス, від англ. Christmas) — недержавне свято в Японії, пов'язане з впливом західної культури, але для більшості японців позбавлене релігійного змісту і відоме як рома...

 

 

Lo stato del Paraguay ricoperto dai colori della bandiera arcobaleno Le persone lesbiche, gay, bisessuali e transgender (LGBT) in Paraguay possono affrontare molteplici difficoltà. Sia l'omosessualità maschile che quella femminile sono legali in Paraguay, ma le coppie dello stesso sesso e le famiglie guidate da coppie dello stesso sesso non hanno diritto ed alcuna tutela. Indice 1 Leggi sull'attività sessuale tra persone dello stesso sesso 2 Riconoscimento delle relazioni tra persone dello...

 

 

English actress (born 1945) Francesca AnnisAnnis in trailer for Flipper's New Adventure (1964)Born (1945-05-14) 14 May 1945 (age 79)Kensington, London, EnglandOccupationActressYears active1959–presentPartner(s)Patrick Wiseman (1976–1997)Ralph Fiennes (1995–2006)Children3 Francesca Annis (born 14 May 1945)[1] is an English actress. She is known for television roles in Reckless (1998), Wives and Daughters (1999), Deceit (2000), and Cranford (2007). A six-time BAFTA TV Aw...

Dark & WildAlbum studio karya Bangtan BoysDirilis19 Agustus 2014Direkam2014GenreHip hop, dance-pop, R&B, K-popDurasi50:50BahasaKoreaLabelBig Hit EntertainmentProduserPdoggKronologi Bangtan Boys Skool Luv Affair(2014)Skool Luv Affair2014 Dark & Wild(2014) Wake Up(2014)Wake Up2014 Singel dalam album Dark & Wild DangerDirilis: 19 Agustus 2014 (2014-08-19) War of Hormone(호르몬 전쟁)Dirilis: 21 Oktober 2014 (2014-10-21) Dark & Wild merupakan album studio...

 

 

Railway station in Hebei, China This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shalingzi East railway station – news · newspapers · books · scholar · JSTOR (March 2010) (Learn how and when to remove this message) Shalingzi East railway station is a station of Jingbao Railway in Hebei. See also List of stations on Jingbao rai...

 

 

Elections in California Federal government U.S. President 1852 1856 1860 1864 1868 1872 1876 1880 1884 1888 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 Dem Rep 2000 Dem Rep 2004 Dem Rep 2008 Dem Rep 2012 Dem Rep 2016 Dem Rep 2020 Dem Rep 2024 Dem Rep U.S. Senate 1849 1850 1852 sp 1856 1857 sp 1860 1860 sp 1868 1872 1873 1873 sp 1878 1880 1885 1886 sp 1887 1891 1891 sp 1893 1895 sp 1897 1900 sp 1903 190...

2019 cancelled American music festival Woodstock 50Original Woodstock 50 promotional posterDatesAugust 16–18, 2019 (canceled)FoundersMichael LangWebsitewoodstock.com Woodstock 50 was a cancelled music festival originally scheduled to be held on August 16–18, 2019 at the Watkins Glen International racetrack in New York and later the Merriweather Post Pavilion in Maryland.[1] The event was intended as a commemoration of the 50th anniversary of the Woodstock Music & Art Fair, a ...

 

 

Mexican politician Hugo B. Margáin1982Secretary of Finance and Public CreditIn office13 August 1970 – 29 May 1973PresidentGustavo Díaz OrdazLuis EcheverríaPreceded byAntonio Ortiz MenaSucceeded byJosé López Portillo Personal detailsBorn(1913-02-13)13 February 1913Mexico City[1]Died11 September 1997(1997-09-11) (aged 84)Mexico[2]Political partyInstitutional Revolutionary Party (PRI)[1]SpouseMargarita Charles[1]RelationsManuel Sandoval Vallar...

 

 

2005 novel by David Bishop A Nightmare on Elm Street: Suffer the Children AuthorDavid BishopLanguageEnglishSeriesA Nightmare on Elm StreetRelease number1GenreHorrorPublisherBlack FlamePublication date26 April 2005Publication placeUnited KingdomMedia typePrint (Paperback)Pages416ISBN9781844161720OCLC61259479Followed byA Nightmare on Elm Street: Dreamspawn  A Nightmare on Elm Street: Suffer the Children is a 2005 British horror novel written by David Bishop and published by Black...

Santa Clarita DietPaeseStati Uniti d'America Anno2017-2019 Formatoserie TV Generecommedia, orrore Stagioni3 Episodi30 Durata25 min (episodio) Lingua originaleinglese Rapporto16:9 CreditiIdeatoreVictor Fresco Interpreti e personaggi Drew Barrymore: Sheila Hammond Timothy Olyphant: Joel Hammond Liv Hewson: Abby Hammond Skyler Gisondo: Eric Bemis Doppiatori e personaggi Rossella Acerbo: Sheila Hammond Massimo De Ambrosis: Joel Hammond Ludovica Bebi: Abby Hammond Federico Bebi: Eric Bemis Mus...

 

 

Cet article est une ébauche concernant une commune de la Nièvre. Vous pouvez partager vos connaissances en l’améliorant (comment ?). Le bandeau {{ébauche}} peut être enlevé et l’article évalué comme étant au stade « Bon début » quand il comporte assez de renseignements encyclopédiques concernant la commune. Si vous avez un doute, l’atelier de lecture du projet Communes de France est à votre disposition pour vous aider. Consultez également la page d’aide ...