Weyl–Brauer matrices

In mathematics, particularly in the theory of spinors, the Weyl–Brauer matrices are an explicit realization of a Clifford algebra as a matrix algebra of 2n/2⌋ × 2n/2⌋ matrices. They generalize the Pauli matrices to n dimensions, and are a specific construction of higher-dimensional gamma matrices. They are named for Richard Brauer and Hermann Weyl,[1] and were one of the earliest systematic constructions of spinors from a representation theoretic standpoint.

The matrices are formed by taking tensor products of the Pauli matrices, and the space of spinors in n dimensions may then be realized as the column vectors of size 2n/2⌋ on which the Weyl–Brauer matrices act.

Construction

Suppose that V = Rn is a Euclidean space of dimension n. There is a sharp contrast in the construction of the Weyl–Brauer matrices depending on whether the dimension n is even or odd.

Let n = 2k (or 2k+1) and suppose that the Euclidean quadratic form on V is given by

where (pi, qi) are the standard coordinates on Rn.

Define matrices 1, 1', P, and Q by

.

In even or in odd dimensionality, this quantization procedure amounts to replacing the ordinary p, q coordinates with non-commutative coordinates constructed from P, Q in a suitable fashion.

Even case

In the case when n = 2k is even, let

for i = 1,2,...,k (where the P or Q is considered to occupy the i-th position). The operation is the tensor product of matrices. It is no longer important to distinguish between the Ps and Qs, so we shall simply refer to them all with the symbol P, and regard the index on Pi as ranging from i = 1 to i = 2k. For instance, the following properties hold:

, and for all unequal pairs i and j. (Clifford relations.)

Thus the algebra generated by the Pi is the Clifford algebra of euclidean n-space.

Let A denote the algebra generated by these matrices. By counting dimensions, A is a complete 2k×2k matrix algebra over the complex numbers. As a matrix algebra, therefore, it acts on 2k-dimensional column vectors (with complex entries). These column vectors are the spinors.

We now turn to the action of the orthogonal group on the spinors. Consider the application of an orthogonal transformation to the coordinates, which in turn acts upon the Pi via

.

That is, . Since the Pi generate A, the action of this transformation extends to all of A and produces an automorphism of A. From elementary linear algebra, any such automorphism must be given by a change of basis. Hence there is a matrix S, depending on R, such that

(1).

In particular, S(R) will act on column vectors (spinors). By decomposing rotations into products of reflections, one can write down a formula for S(R) in much the same way as in the case of three dimensions.

There is more than one matrix S(R) which produces the action in (1). The ambiguity defines S(R) up to a nonevanescent scalar factor c. Since S(R) and cS(R) define the same transformation (1), the action of the orthogonal group on spinors is not single-valued, but instead descends to an action on the projective space associated to the space of spinors. This multiple-valued action can be sharpened by normalizing the constant c in such a way that (det S(R))2 = 1. In order to do this, however, it is necessary to discuss how the space of spinors (column vectors) may be identified with its dual (row vectors).

In order to identify spinors with their duals, let C be the matrix defined by

Then conjugation by C converts a Pi matrix to its transpose: tPi = C Pi C−1. Under the action of a rotation,

whence C S(R) C−1 = α tS(R)−1 for some scalar α. The scalar factor α can be made to equal one by rescaling S(R). Under these circumstances, (det S(R))2 = 1, as required.

In physics, the matrix C is conventionally interpreted as charge conjugation.

Weyl spinors

Let U be the element of the algebra A defined by

, (k factors).

Then U is preserved under rotations, so in particular its eigenspace decomposition (which necessarily corresponds to the eigenvalues +1 and -1, occurring in equal numbers) is also stabilized by rotations. As a consequence, each spinor admits a decomposition into eigenvectors under U:

ξ = ξ+ + ξ

into a right-handed Weyl spinor ξ+ and a left-handed Weyl spinor ξ. Because rotations preserve the eigenspaces of U, the rotations themselves act diagonally as matrices S(R)+, S(R) via

(S(R)ξ)+ = S+(R) ξ+, and
(S(R)ξ) = S(R) ξ.

This decomposition is not, however, stable under improper rotations (e.g., reflections in a hyperplane). A reflection in a hyperplane has the effect of interchanging the two eigenspaces. Thus there are two irreducible spin representations in even dimensions given by the left-handed and right-handed Weyl spinors, each of which has dimension 2k-1. However, there is only one irreducible pin representation (see below) owing to the non-invariance of the above eigenspace decomposition under improper rotations, and that has dimension 2k.

Odd case

In the quantization for an odd number 2k+1 of dimensions, the matrices Pi may be introduced as above for i = 1,2,...,2k, and the following matrix may be adjoined to the system:

, (k factors),

so that the Clifford relations still hold. This adjunction has no effect on the algebra A of matrices generated by the Pi, since in either case A is still a complete matrix algebra of the same dimension. Thus A, which is a complete 2k×2k matrix algebra, is not the Clifford algebra, which is an algebra of dimension 2×2k×2k. Rather A is the quotient of the Clifford algebra by a certain ideal.

Nevertheless, one can show that if R is a proper rotation (an orthogonal transformation of determinant one), then the rotation among the coordinates

is again an automorphism of A, and so induces a change of basis

exactly as in the even-dimensional case. The projective representation S(R) may again be normalized so that (det S(R))2 = 1. It may further be extended to general orthogonal transformations by setting S(R) = -S(-R) in case det R = -1 (i.e., if R is a reversal).

In the case of odd dimensions it is not possible to split a spinor into a pair of Weyl spinors, and spinors form an irreducible representation of the spin group. As in the even case, it is possible to identify spinors with their duals, but for one caveat. The identification of the space of spinors with its dual space is invariant under proper rotations, and so the two spaces are spinorially equivalent. However, if improper rotations are also taken into consideration, then the spin space and its dual are not isomorphic. Thus, while there is only one spin representation in odd dimensions, there are a pair of inequivalent pin representations. This fact is not evident from the Weyl's quantization approach, however, and is more easily seen by considering the representations of the full Clifford algebra.

See also

Notes

  1. ^ Brauer, Richard; Weyl, Hermann (1935). "Spinors in n dimensions". Am. J. Math. 57: 425–449. doi:10.2307/2371218. JFM 61.1025.06. JSTOR 2371218. Zbl 0011.24401..

Read other articles:

HaSeulLagu oleh LoonaDirilis15 Desember 2016GenrePopDurasi6:35LabelBlockberry CreativeCJ E&MVideo musikLet Me In di YouTubeVideo musikThe Carol di YouTube HaSeul (atau LOOΠΔ & HaSeul) adalah singel ketiga dari proyek pra-debut girl grup Korea Selatan Loona. Singel ini dirilis pada 15 Desember 2016 oleh Blockberry Creative dan didistribusikan oleh CJ E&M.[1] Ini memperkenalkan anggota HaSeul dan berisi dua lagu, solo berjudul Let Me In, dan sebuah lagu kolaborasi Natal be...

 

 

Swansea City AFCNama lengkapSwansea City Association Football ClubJulukanThe Swans, The JacksBerdiri1912; 112 tahun lalu (1912) (sebagai Swansea Town)StadionStadion Liberty(Landore, Swansea)(Kapasitas: 20.750)Ketua Trevor BirchManajer Steve CooperLigaLiga Championship Inggris2019–20ke-6, Liga ChampionshipSitus webSitus web resmi klub Kostum kandang Kostum tandang Musim ini Swansea City Association Football Club (/ˈswɒnzi ˈsɪti/; bahasa Wales: Clwb Pêl-droed Dinas Abertawe...

 

 

Kashmiri fried potato curry This page has been copied to the Wikibooks Cookbook using the Import tool. The wikibooks version of this article can be found by following this link to the cookbook article. If the page can be re-written into an encyclopedic article, please do so and remove this message and/or add a link to the wikibook using {{cookbook}}. Dum alooDum alooAlternative namesAloor dumCourseMainPlace of originIndiaRegion or stateJammu and Kashmir, West Bengal of Ind...

Pour les articles homonymes, voir ASU. Cet article est une ébauche concernant une université américaine et l’Arizona. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Université d’État de l’ArizonaHistoireFondation 26 février 1885StatutType Université publiqueNom officiel Arizona State UniversityRégime linguistique AnglaisFondateur Charles T. Hayden (en)Président Michael M. Crow (en)Membre de ...

 

 

2017 studio album by Freddie GibbsYou Only Live 2wiceStudio album by Freddie GibbsReleasedMarch 31, 2017[1]Recorded2016–17GenreHip hopLength31:49LabelESGNEmpireProducerFreddie Gibbs (exec.)Lambo (exec.)Speakerbomb (exec.)Aaron BowBADBADNOTGOODBlair NorfCrooklinDupriDNYC3ESVYBEJay NariKaytranadaSLWJMZTeddy WaltonPopsFreddie Gibbs chronology Shadow of a Doubt(2015) You Only Live 2wice(2017) Freddie(2018) Singles from You Only Live 2wice Crushed GlassReleased: March 8, 2017 You...

 

 

Voce principale: Fußballclub Carl Zeiss Jena. Fußballclub Carl Zeiss JenaStagione 1997-1998Sport calcio Squadra Carl Zeiss Jena Allenatore Frank Engel (1ª-15ª) Reiner Hollmann (16ª-34ª) 2. Bundesliga16º posto Coppa di GermaniaQuarti di finale Maggiori presenzeCampionato: Nierlich, Schneider (33)Totale: Nierlich, Schneider (37) Miglior marcatoreCampionato: Weber, Schneider (6)Totale: Weber (7) StadioErnst-Abbe-Sportfeld Maggior numero di spettatori7 973 vs. Eintracht Francofo...

Mindi kecil Daun, bunga, dan buah mindi Klasifikasi ilmiah Kerajaan: Plantae (tanpa takson): Tracheophyta (tanpa takson): Angiospermae (tanpa takson): Eudikotil (tanpa takson): Rosidae Ordo: Sapindales Famili: Meliaceae Genus: Melia Spesies: M. azedarach Nama binomial Melia azedarachL.[1] Sinonim Melia australis Sweet Melia candollei Sw. Melia japonica G.Don Melia sempervirens Sw. Melia azedarach Mindi adalah tanaman pohon dari famili Meliaceae.[2] Mindi juga dikenal seb...

 

 

Knife associated with the Gurkhas of Nepal Khukuri, Khukuri and Khukuri redirect here. For other uses, see Kukri (disambiguation). Kukri TypeBladed melee weapon, utility toolPlace of originGorkha KingdomService historyIn servicec. 7th century – present[1]Used byGurkhas and Kiratis (natively)WarsGurkha WarAnglo-Afghan WarsSino-Nepalese WarThird Nepal–Tibet WarWorld War IWorld War II1962 Sino-Indian WarSecond Indo-Pakistani War1967 Sino-Indian WarThird Indo...

 

 

Den här artikeln behöver källhänvisningar för att kunna verifieras. (2024-01) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. County Mayo Contae Mhaigh Eo Grevskap Vapen Land  Irland Provins Connacht Huvudort Castlebar Area 5 397 km² Folkmängd 117 428 (2002) Befolkningstäthet 22 invånare/km² Tidszon WET (U...

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

 

Directeur sportif and former road bicycle racer Johan BruyneelBruyneel in 2009Personal informationFull nameJohan BruyneelBorn (1964-08-23) 23 August 1964 (age 59)Izegem, BelgiumTeam informationDisciplineRoadRoleManagerProfessional teams1989SEFB1990–1991Lotto–Superclub1992–1995ONCE1996–1997Rabobank1998ONCE Managerial teams1999–2007U.S. Postal Service2008–2009Astana2010–2011Team RadioShack2012RadioShack–Nissan Major winsGrand Tours Tour de France 2 individual stages (1...

 

 

Disambiguazione – Se stai cercando il dittatore spagnolo, vedi Francisco Franco. Questa voce o sezione sull'argomento politica non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Juan Vicente Gómez (1857 – 1935) Caudillo (plurale caudilli o caudillos;[1] in spagnolo caudillo; in portoghese caudil...

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府...

 

 

H.P. Lovecraft’s Cthulhu: The Whisperer in DarknessPublication informationPublisherMillennium PublicationsFormatlimited seriesPublication dateDecember 1991 - April 1992No. of issues3Main character(s)The Miskatonic ProjectCreative teamWritten byMark Ellis, Terry CollinsArtist(s)Darryl Banks, Don Heck H.P. Lovecraft’s Cthulhu: The Whisperer in Darkness was a three-part comic book mini-series published in the USA by Millennium Publications. It followed a group of investigators, the Miskatoni...

 

 

تحقيق جنائيقاعدة الأسد الجوية، العراق، ضابط شرطة عراقي في دورة التحقيقات الجنائية الأساسية، يقوم بوضع علامات مرقمة في مسرح جريمة وهمية لتبيين الأدلة أثناء التمرين النهائيمعلومات عامةصنف فرعي من نشاطمشروع إنفاذ القانونعمل قانوني تسبب في الادعاء العامتبرئة تعديل - تعديل ...

Semiconductor manufacturing processes with a 3 nm GAAFET/FinFET technology node Semiconductordevicefabrication MOSFET scaling(process nodes) 020 μm – 1968 010 μm – 1971 006 μm – 1974 003 μm – 1977  1.5 μm – 1981 001 μm – 1984 800 nm – 1987 600 nm – 1990 350 nm – 1993 250 nm – 1996 180 nm – 1999 130 nm – 2001 090 nm – 2003 065...

 

 

Founder and first king of Saudi Arabia (r. 1932–1953) This article is about Abdulaziz bin Abdul Rahman, the first king of Saudi Arabia. For his ancestor who is also called Ibn Saud, see Muhammad bin Saud Al Muqrin. For the Ottoman ruler of the same name, see Abdulaziz of the Ottoman Empire. King Abdel-Aziz redirects here. For the passenger ship, see MV King Abdelaziz. In this Arabic name, the surname is Al Saud. Ibn SaudImam of NejdKing of Saudi ArabiaReign23 September 1932 – 9 November 1...

 

 

Spanish intelligence agent (born 1956) Esperanza CasteleiroDirector of the National Intelligence CenterIncumbentAssumed office 11 May 2022PresidentPedro SánchezPreceded byPaz Esteban LópezSecretary of State for DefenseIn office1 July 2020 – 11 May 2022Preceded byÁngel Olivares [es]Succeeded byAmparo Valcarce [es]Secretary-general of the National Intelligence CenterIn office28 September 2004 – 21 June 2008Preceded byMaría Dolores Vilanova...

  提示:此条目页的主题不是克里米亚鞑靼语或西伯利亚鞑靼语。 鞑靼语/塔塔尔语татар теле, tatar tele, تاتار تلی分别以西里尔字母、拉丁字母和阿拉伯字母书写的鞑靼语区域伏尔加地区族群鞑靼人母语使用人数约520万 (2015)[1]語系突厥语系 西突厥语族钦察语支鞑靼语/塔塔尔语早期形式古鞑靼语 鞑靼语/塔塔尔语 文字西里尔字母,拉丁字母,阿拉�...

 

 

Ukrainian ice dancer Julia GolovinaGolovina and Voiko in 2004Born (1982-05-30) 30 May 1982 (age 42)Kharkiv, Ukrainian SSRHeight1.65 m (5 ft 5 in)Figure skating careerCountryUkraine RussiaSkating clubDallas Figure Skating ClubBegan skating1986Retired2006 Medal record Figure skating: Ice dancing Representing  Ukraine Winter Universiade 2005 Innsbruck Ice dancing Julia Golovina (born 30 May 1982) is a Ukrainian former competitive ice dancer. With former partner Oleg Voik...