Vasomotor center
Portion of the medulla oblongata
The vasomotor center (VMC ) is a portion of the medulla oblongata . Together with the cardiovascular center and respiratory center , it regulates blood pressure .[ 1] It also has a more minor role in other homeostatic processes.[citation needed ] Upon increase in carbon dioxide level at central chemoreceptors , it stimulates the sympathetic system to constrict vessels. This is opposite to carbon dioxide in tissues causing vasodilatation, especially in the brain.[ 2] Cranial nerves IX (glossopharyngeal nerve ) and X (vagus nerve ) both feed into the vasomotor centre and are themselves involved in the regulation of blood pressure.
Structure
The vasomotor center is a collection of integrating neurons in the medulla oblongata of the middle brain stem . The term "vasomotor center" is not truly accurate, since this function relies not on a single brain structure ("center") but rather represents a network of interacting neurons.[ 3]
Afferent fibres
The vasomotor center integrates nerve impulses from many places via the solitary nucleus :[ 4]
Efferent fibres
The vasomotor center gives off sympathetic fibres through the spinal cord and sympathetic ganglia , which reach vascular smooth muscle.[ 6]
Function
The vasomotor center changes vascular smooth muscle tone .[ 1] [ 5] This changes local and systemic blood pressure .[ 1]
A drop in blood pressure leads to increased sympathetic tone from the vasomotor center.[ 7] This acts to raise blood pressure.[ 7]
Clinical significance
Methyldopa acts on the vasomotor center, leading to selective stimulation of α2 -adrenergic receptor .[ 8] Guanfacine also causes the same stimulation.[ 9] This reduces sympathetic tone to vascular smooth muscle.[ 9] This reduces heart rate and vascular resistance .[ 9]
Digoxin increases vagal tone from the vasomotor centre, which decreases pulse .[ 7]
G-series nerve agents have their most potent effect in the vasomotor center.[ 10] Unlike other parts of the body, where continued stimulation of acetylcholine receptors leads to recoverable paralysis , overstimulation of the vasomotor center is often causes a fatal rise in blood pressure.[ 11]
History
The localization of vasomotor center was determined by Filipp Ovsyannikov in 1871.[ 10]
See also
References
^ a b c Sear, John W. (January 1, 2019), Hemmings, Hugh C.; Egan, Talmage D. (eds.), "26 - Antihypertensive Drugs and Vasodilators" , Pharmacology and Physiology for Anesthesia (Second Edition) , Philadelphia: Elsevier, pp. 535– 555, doi :10.1016/b978-0-323-48110-6.00026-0 , ISBN 978-0-323-48110-6 , S2CID 220688413 , retrieved November 29, 2020
^ "Bionic blood pressure device being developed at Vanderbilt" . Retrieved October 6, 2008 .
^ Guyenet, Patrice G. (May 2006). "The sympathetic control of blood pressure". Nature Reviews. Neuroscience . 7 (5): 335– 346. doi :10.1038/nrn1902 . ISSN 1471-003X . PMID 16760914 . S2CID 8752032 .
^ Northcott, Carrie A.; Haywood, Joseph R. (January 1, 2007), Lip, Gregory Y. H.; Hall, John E. (eds.), "Chapter 25 - Central Nervous System Control of Blood Pressure", Comprehensive Hypertension , Philadelphia: Mosby, pp. 281– 290, doi :10.1016/b978-0-323-03961-1.50028-3 , ISBN 978-0-323-03961-1
^ a b Schwarzwald, Colin C.; Bonagura, John D.; Muir, William W. (January 1, 2009), Muir, William W.; Hubbell, John A. E. (eds.), "Chapter 3 - The Cardiovascular System" , Equine Anesthesia (Second Edition) , Saint Louis: W.B. Saunders, pp. 37– 100, doi :10.1016/b978-1-4160-2326-5.00003-1 , ISBN 978-1-4160-2326-5 , retrieved November 29, 2020
^ Touyz, Rhian M. (January 1, 2014), Willis, Monte S.; Homeister, Jonathon W.; Stone, James R. (eds.), "Chapter 14 - Blood Pressure Regulation and Pathology" , Cellular and Molecular Pathobiology of Cardiovascular Disease , San Diego: Academic Press, pp. 257– 275, doi :10.1016/b978-0-12-405206-2.00014-4 , ISBN 978-0-12-405206-2 , retrieved November 29, 2020
^ a b c Waller, Derek G.; Sampson, Anthony P. (January 1, 2018), Waller, Derek G.; Sampson, Anthony P. (eds.), "7 - Heart failure" , Medical Pharmacology and Therapeutics (Fifth Edition) , Elsevier, pp. 131– 142, doi :10.1016/b978-0-7020-7167-6.00007-5 , ISBN 978-0-7020-7167-6 , retrieved November 29, 2020
^ O'Shaughnessy, Kevin M. (January 1, 2012), Bennett, Peter N.; Brown, Morris J.; Sharma, Pankaj (eds.), "Chapter 24 - Arterial hypertension, angina pectoris, myocardial infarction and heart failure" , Clinical Pharmacology (Eleventh Edition) , Oxford: Churchill Livingstone, pp. 393– 427, doi :10.1016/b978-0-7020-4084-9.00063-x , ISBN 978-0-7020-4084-9 , retrieved November 29, 2020
^ a b c Rizzo, Renata; Gulisano, Mariangela (January 1, 2013), Martino, Davide; Cavanna, Andrea E. (eds.), "Chapter Fourteen - Clinical Pharmacology of Comorbid Attention Deficit Hyperactivity Disorder in Tourette Syndrome" , International Review of Neurobiology , Advances in the Neurochemistry and Neuropharmacology of Tourette Syndrome, 112 , Academic Press: 415– 444, doi :10.1016/b978-0-12-411546-0.00014-7 , PMID 24295629 , retrieved November 29, 2020
^ a b Owsjannikow, PH. Die tonischen und reflektorischen Centren der Gefäßnerven. / Berichte ueber die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig (1871) 23.
^ Abdollahi, M.; Mostafalou, S. (January 1, 2014), "G-Series Nerve Agents" , in Wexler, Philip (ed.), Encyclopedia of Toxicology (Third Edition) , Oxford: Academic Press, pp. 800– 805, ISBN 978-0-12-386455-0 , retrieved November 29, 2020