Vaccine efficacy

Influenza Vaccine

Vaccine efficacy or vaccine effectiveness is the percentage reduction of disease cases in a vaccinated group of people compared to an unvaccinated group. For example, a vaccine efficacy or effectiveness of 80% indicates an 80% decrease in the number of disease cases among a group of vaccinated people compared to a group in which nobody was vaccinated. When a study is carried out using the most favorable, ideal or perfectly controlled conditions,[1] such as those in a clinical trial, the term vaccine efficacy is used.[2] On the other hand, when a study is carried out to show how well a vaccine works when they are used in a bigger, typical population under less-than-perfectly controlled conditions, the term vaccine effectiveness is used.[1][2]

Vaccine efficacy was designed and calculated by Greenwood and Yule in 1915 for the cholera and typhoid vaccines. It is best measured using double-blind, randomized, clinical controlled trials, such that it is studied under "best case scenarios."[3]

Vaccine efficacy studies are used to measure several important and critical outcomes of interest such as disease attack rates, hospitalizations due to the disease, deaths due to the disease, asymptomatic infection, serious adverse events due to vaccination, vaccine reactogenicity, and cost effectiveness of the vaccine. Vaccine efficacy is calculated on a set population (and therefore is not a constant value when counting in other populations), and may be misappropriated to be how efficacious a vaccine is in all populations.

Testing

Vaccine efficacy differs from vaccine effectiveness in the same way that an explanatory clinical trial differs from an intention-to-treat trial[clarification needed]: vaccine efficacy shows how effective a vaccine could be given ideal circumstances and 100% vaccine uptake (such as the conditions within a controlled clinical trial); vaccine effectiveness measures how well a vaccine performs when it is used in routine circumstances in the community.[4] What makes vaccine efficacy relevant is that it shows the disease attack rates as well as a tracking of vaccination status.[jargon][4] Vaccine effectiveness is relatively inexpensive to measure than vaccine efficacy. The measurement of vaccine effectiveness relies on observational studies which are usually easier to perform, whereas a vaccine efficacy measurement requires randomized controlled trials which are time and capital intensive.[5][4] Because a clinical trial is based on people who are taking the vaccine and those who are not, there is a risk for disease, and optimal treatment is needed for those who become infected.

The advantages of measuring vaccine efficacy is having the ability to control for selection bias, as well as prospective, active monitoring for disease attack rates, and careful tracking of vaccination status for a study population there is normally a subset as well; laboratory confirmation of the infectious outcome of interest and a sampling of vaccine immunogenicity.[4][failed verification] The major disadvantages of vaccine efficacy trials are the complexity and expense of performing them, especially for relatively uncommon infectious outcomes of diseases for which the sample size required is driven up to achieve clinically useful statistical power.[4] Vaccine effectiveness estimates obtained from observational studies are usually subject to selection bias.[6] Since 2014, epidemiologists have used quasi-experimental designs to obtain unbiased estimates of vaccine effectiveness.[7][8][9]

Standardized statements of efficacy may be parametrically expanded to include multiple categories of efficacy in a table format. While conventional efficacy/effectiveness data typically shows the ability to prevent a symptomatic infection, this expanded approach could include prevention of outcomes categorized to include symptom class, viral damage minor/serious, hospital admission, ICU admission, death, various viral shedding levels, etc. Capturing effectiveness at preventing each of these "outcome categories" is typically part of any study and could be provided in a table with clear definitions instead of being inconsistently presented in study discussion as is typically done in past practice.[10]

Biological factors

Biological exposures such as parasites affect the immune responses after vaccination.[11] This can be seen in areas with a high burden of parasitic infections where vaccine responses are low for vaccines such as BCG.[12] Infections like malaria suppress immune responses to polysaccharide vaccines. A potential solution is to give curative treatment before vaccination in areas where malaria is present.[11] The effect of parasites on vaccine response has also been observed in individuals infected by helminths in areas that have a high burden of infectious diseases. Established helminth infections at the time of vaccination affect vaccine responses.[13]

Other biological factors such as smoking, age, sex, and nutrition also affect vaccine responses. In the case of hepatitis B vaccine, for example, increasing age, being male, having a body mass index > 25, and smoking can result in lower seroprotection rates.[14] In addition, other factors such as the composition of the gut microbiota can affect responses to vaccination.[15]

Formula

The outcome data (vaccine efficacy) generally are expressed as a proportionate reduction in disease attack rate (AR) between the unvaccinated (ARU) and vaccinated (ARV), or can be calculated from the relative risk (RR) of disease among the vaccinated group.[16][17][18]

The basic formula[19] is written as:with

  • = Vaccine efficacy,
  • = Attack rate of unvaccinated people,
  • = Attack rate of vaccinated people.

An alternative, equivalent formulation of vaccine efficacy is: where is the relative risk of developing the disease for vaccinated people compared to unvaccinated people.

The design of clinical trials ensures that regulatory approval is issued only for effective vaccines. However, during research, it is possible that an intervention actually increases the risk of participants, for example, in the STEP and Phambili studies, which were both intended to test an experimental HIV vaccine .[20] In these cases, the formula would yield a negative efficacy value because . A negative efficacy value is sometimes present in the lower limit of a confidence interval of an estimate of vaccine efficacy for specific clinical endpoints. While this means that the intervention may actually have a negative effect, it could also be simply due to small sample size or sample variability.

Relative risk

First, the baseline risk can be calculated for each group and then vaccine efficacy (RRR) as follows:

  • for the vaccinated group (24 infections)
  • for the placebo group (106 infections)
  • The relative risk,

Then,

Also, the absolute risk reduction (ARR) for any vaccine can simply be obtained from calculating the difference of risks between the groups i.e. 0.86%–0.196% which renders a value of about 0.66% for the above example.

Cases studied

The New England Journal of Medicine did a study on the efficacy of a vaccine for the influenza A virus. A total of 1,952 subjects were enrolled and received study vaccines in the fall of 2007. Influenza activity occurred from January through April 2008, with the circulation of influenza types:

  • A (H3N2) (about 90%)
  • B (about 9%)

Absolute efficacy against both types of influenza, as measured by isolating the virus in culture, identifying it on real-time polymerase-chain-reaction assay, or both, was 68% (95% confidence interval [CI], 46 to 81) for the inactivated vaccine and 36% (95% CI, 0 to 59) for the live attenuated vaccine. In terms of relative efficacy, there was a 50% (95% CI, 20 to 69) reduction in laboratory-confirmed influenza among subjects who received inactivated vaccine as compared with those given live attenuated vaccine. Subjects were healthy adults. The efficacy against the influenza A virus was 72% and for the inactivated was 29% with a relative efficacy of 60%.[21] The influenza vaccine is not 100% efficacious in preventing disease, but it is close to 100% safe, and much safer than the disease.[22][23]

Since 2004, clinical trials testing the efficacy of the influenza vaccine have been slowly coming in: 2,058 people were vaccinated in October and November 2005. Influenza activity was prolonged but of low intensity; type A (H3N2) was the virus that was generally spreading around the population, which was very like the vaccine itself. The efficacy of the inactivated vaccine was 16% (95% confidence interval [CI], -171% to 70%) for the virus identification end point (virus isolation in cell culture or identification through polymerase chain reaction) and 54% (95% CI, 4%–77%) for the primary end point (virus isolation or increase in serum antibody titer). The absolute efficacies of the live attenuated vaccine for these end points were 8% (95% CI, -194% to 67%) and 43% (95% CI, -15% to 71%).[24]

With serologic end points included, efficacy was demonstrated for the inactivated vaccine in a year with low influenza attack rates. Influenza vaccines are effective in reducing cases of influenza, especially when the content predicts accurately circulating types and circulation is high. However, they are less effective in reducing cases of influenza-like illness and have a modest impact on working days lost. There is insufficient evidence to assess their impact on complications.

References

  1. ^ a b Zimmer, Carl (20 November 2020). "2 Companies Say Their Vaccines Are 95% Effective. What Does That Mean? You might assume that 95 out of every 100 people vaccinated will be protected from Covid-19. But that's not how the math works". The New York Times. Retrieved 21 November 2020.
  2. ^ a b Principles of Epidemiology in Public Health Practice (3rd ed.), U.S. Department of Health and Human Services and Centers for Disease Control and Prevention (CDC), 2006, pp. 3–49
  3. ^ (Weinburg, G., & Szilagyi, P. (2010). Vaccine Epidemiology: Efficacy, Effectiveness, and the Translational Research Roadmap. Journal of Infectious Diseases, 201(11), 1607-1610.)
  4. ^ a b c d e "How flu vaccine effectiveness and efficacy are measured". Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, US Department of Health and Human Services. 2016-01-29. Retrieved 2020-05-06.
  5. ^ Ferreira, Juliana Carvalho; Patino, Cecilia Maria (2016). "Choosing wisely between randomized controlled trials and observational designs in studies about interventions". Jornal Brasileiro de Pneumologia. 42 (2016): 165-165. doi:10.1590/S1806-37562016000000152. PMC 5569603. PMID 27383927.
  6. ^ Jackson, Michael; Phillips, Hallie; Benoit, Joyce; Kiniry, Erika; Madziwa, Lawrence; Nelson, Jennifer; Jackson, Lisa (2018). "The impact of selection bias on vaccine effectiveness estimates from test-negative studies". Vaccine. 36 (5): 751–757. doi:10.1016/j.vaccine.2017.12.022. PMID 29254838.
  7. ^ Basta, Nicole; Halloran, Elizabeth (2019). "Evaluating the effectiveness of vaccines using a regression discontinuity design". American Journal of Epidemiology. 188 (6): 987–990. doi:10.1093/aje/kwz043. PMC 6580688. PMID 30976806.
  8. ^ Bor, Jacob; Moscoe, Ellen; Mutevedzi, Portia; Newell, Marie-Louise; Barnighausen, Till (2014). "Regression discontinuity designs in epidemiology: causal inference without randomized trials". Epidemiology. 25 (5): 729–737. doi:10.1097/EDE.0000000000000138. PMC 4162343. PMID 25061922.
  9. ^ Mukherjee, Abhiroop; Panayotov, George; Sen, Rik; Dutta, Harsha; Ghosh, Pulak (2022). "Measuring vaccine effectiveness from limited public health datasets: Framework and estimates from India's second COVID wave". Science Advances. 8 (18): eabn4274. Bibcode:2022SciA....8N4274M. doi:10.1126/sciadv.abn4274. PMC 9075799. PMID 35522748.
  10. ^ Hodgson, Susanne H.; Mansatta, Kushal; Mallett, Garry; Harris, Victoria; Emary, Katherine R. W.; Pollard, Andrew J. (February 2021). "What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2". The Lancet. Infectious Diseases. 21 (2): e26 – e35. doi:10.1016/S1473-3099(20)30773-8. ISSN 1474-4457. PMC 7837315. PMID 33125914.
  11. ^ a b Cunnington, Aubrey J; Riley, Eleanor M (April 2010). "Suppression of vaccine responses by malaria: insignificant or overlooked?". Expert Review of Vaccines. 9 (4): 409–429. doi:10.1586/erv.10.16. ISSN 1476-0584. PMID 20370551.
  12. ^ Fine, P.E.M. (1995-11-18). "Variation in protection by BCG: implications of and for heterologous immunity". The Lancet. 346 (8986): 1339–1345. doi:10.1016/S0140-6736(95)92348-9. PMID 7475776.
  13. ^ Natukunda, Agnes; Zirimenya, Ludoviko; Nassuuna, Jacent; Nkurunungi, Gyaviira; Cose, Stephen; Elliott, Alison M.; Webb, Emily L. (17 June 2022). "The effect of helminth infection on vaccine responses in humans and animal models: A systematic review and meta-analysis". Parasite Immunology. 44 (9): e12939. doi:10.1111/pim.12939. ISSN 0141-9838. PMC 9542036. PMID 35712983.
  14. ^ Yang, Shigui; Tian, Guo; Cui, Yuanxia; Ding, Cheng; Deng, Min; Yu, Chengbo; Xu, Kaijin; Ren, Jingjing; Yao, Jun; Li, Yiping; Cao, Qing; Chen, Ping; Xie, Tiansheng; Wang, Chencheng; Wang, Bing (2016-06-21). "Factors influencing immunologic response to hepatitis B vaccine in adults". Scientific Reports. 6 (1): 27251. Bibcode:2016NatSR...627251Y. doi:10.1038/srep27251. ISSN 2045-2322. PMC 4914839. PMID 27324884.
  15. ^ Lynn, David J.; Benson, Saoirse C.; Lynn, Miriam A.; Pulendran, Bali (17 May 2021). "Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms". Nature Reviews Immunology. 22 (1): 33–46. doi:10.1038/s41577-021-00554-7. ISSN 1474-1733. PMC 8127454. PMID 34002068.
  16. ^ Weinberg, Geoffrey A.; Szilagyi, Peter G. (2010-06-01). "Vaccine Epidemiology: Efficacy, Effectiveness, and the Translational Research Roadmap". The Journal of Infectious Diseases. 201 (11): 1607–1610. doi:10.1086/652404. ISSN 0022-1899. PMID 20402594. S2CID 29528780.
  17. ^ Clemens, J.; Brenner, R.; Rao, M.; Tafari, N.; Lowe, C. (1996-02-07). "Evaluating new vaccines for developing countries. Efficacy or effectiveness?". JAMA. 275 (5): 390–397. doi:10.1001/jama.1996.03530290060038. ISSN 0098-7484. PMID 8569019.
  18. ^ Orenstein, W. A.; Bernier, R. H.; Hinman, A. R. (1988). "Assessing vaccine efficacy in the field. Further observations". Epidemiologic Reviews. 10: 212–241. doi:10.1093/oxfordjournals.epirev.a036023. ISSN 0193-936X. PMID 3066628.
  19. ^ Orenstein WA, Bernier RH, Dondero TJ, Hinman AR, Marks JS, Bart KJ, Sirotkin B (1985). "Field evaluation of vaccine efficacy". Bull. World Health Organ. 63 (6): 1055–1068. PMC 2536484. PMID 3879673.
  20. ^ Fauci AS, Marovich MA, Dieffenbach CW, Hunter E, Buchbinder SP (2014-04-04). "Immune Activation with HIV Vaccines: Implications of the Adenovirus Vector Experience". Science. 344 (6179): 49–51. doi:10.1126/science.1250672. ISSN 0036-8075. PMC 4414116. PMID 24700849.
  21. ^ Crislip (2009) cited Monto, Arnold S.; Ohmit, Suzanne E.; Petrie, Joshua G.; Johnson, Emileigh; Truscon, Rachel; Teich, Esther; Rotthoff, Judy; Boulton, Matthew; Victor, John C. (2009). "Comparative Efficacy of Inactivated and Live Attenuated Influenza Vaccines". New England Journal of Medicine. 361 (13): 1260–1267. doi:10.1056/NEJMoa0808652. ISSN 0028-4793. PMID 19776407. S2CID 205090564.
  22. ^ Gidengil, Courtney; Goetz, Matthew Bidwell; Newberry, Sydne; Maglione, Margaret; Hall, Owen; Larkin, Jody; Motala, Aneesa; Hempel, Susanne (2021-06-23). "Safety of vaccines used for routine immunization in the United States: An updated systematic review and meta-analysis". Vaccine. 39 (28): 3696–3716. doi:10.1016/j.vaccine.2021.03.079. ISSN 1873-2518. PMID 34049735. S2CID 235241761.
  23. ^ Crislip, M (2009-10-09). "Flu Vaccine Efficacy". Science-Based Medicine. Archived from the original on 2020-06-01.
  24. ^ Crislip (2009) cited Ohmit, Suzanne E.; Victor, John C.; Teich, Esther R.; Truscon, Rachel K.; Rotthoff, Judy R.; Newton, Duane W.; Campbell, Sarah A.; Boulton, Matthew L.; Monto, Arnold S. (2008). "Prevention of Symptomatic Seasonal Influenza in 2005–2006 by Inactivated and Live Attenuated Vaccines". The Journal of Infectious Diseases. 198 (3): 312–317. doi:10.1086/589885. ISSN 0022-1899. PMC 2613648. PMID 18522501.

Read other articles:

Empis chioptera Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Diptera Famili: Empididae Genus: Empis Spesies: Empis chioptera Nama binomial Empis chiopteraMeigen, 1804 Empis chioptera adalah spesies lalat yang tergolong ke dalam famili Empididae. Spesies ini juga merupakan bagian dari genus Empis dan ordo Diptera.[1][2] Nama ilmiah dari spesies ini pertama kali diterbitkan pada tahun 1804 oleh Meigen. Referensi ^ Bisby F.A., Roskov Y.R., Orrell ...

 

 

Perdana Menteri Republik Arab MesirLambang MesirPetahanaMoustafa Madbouly[1]sejak 7 Juni 2018GelarYang MuliaMasa jabatanTidak ada batasanPejabat perdanaNubar PashaDibentuk28 Agustus 1878Situs webwww.cabinet.gov.eg Mesir Artikel ini adalah bagian dari seri Politik dan KetatanegaraanRepublik Arab Mesir Konstitusi (sejarah) Pemerintahan Presiden (daftar) Abdel Fattah el-Sisi Perdana Menteri (daftar) Sherif Ismail Kabinet Legislatif Parlemen Dewan Perwakilan Rakyat Ketua (daftar) Ali...

 

 

منتخب تركمانستان لكرة القدم (بالتركمانية: Türkmenistanyň Milli Futbol Ýygyndysy)‏  معلومات عامة بلد الرياضة  تركمانستان الفئة كرة القدم للرجال  رمز الفيفا TKM  الاتحاد اتحاد تركمانستان لكرة القدم كونفدرالية آفك (آسيا) الملعب الرئيسي ملعب صفرمراد تركمنباشي الأولمبي الموقع الرسم...

Negasonic Teenage WarheadInformasi publikasiPenerbitMarvel ComicsPenampilan pertamaNew X-Men #115 (Agustus 2001)Dibuat olehGrant Morrison Frank QuitelyInformasi dalam ceritaFull nameEllie PhimisterSpesiesMutan manusiaAfiliasi tim Hellfire Club Mercs for Money X-Men KemitraanYukio (hanya dalam film)Kemampuan Telepati Prekognisi Kekuatan, kecepatan, ketangguhan, dan refleks manusia super Memanfaatkan, menghasilkan, dan menyerap energi radioaktif Memanipulasi suasana Nukleokinesis Telekinesis Ne...

 

 

Cet article est une ébauche concernant un groupe ethnique, la Serbie et l’Europe. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Serbes(sr)Срби/Srbi Drapeau de la nation serbe,en usage constant depuis 1835. Populations importantes par région Serbie 7 637 395 Bosnie-Herzégovine 1 411 000 (2008) États-Unis 1 000 000[1] (2009)[2] Allemagne 700 000[1] Brésil environ 6&#...

 

 

Labuhan RukuKelurahanKantor Kelurahan Labuhan RukuNegara IndonesiaProvinsiSumatera UtaraKabupatenBatu BaraKecamatanTalawiKodepos21254Kode Kemendagri12.19.05.1001 Kode BPS1219030011 Luas... km²Jumlah penduduk... jiwaKepadatan... jiwa/km² Labuhan Ruku merupakan kelurahan yang ada di kecamatan Talawi, Kabupaten Batu Bara, provinsi Sumatera Utara, Indonesia. Pranala luar (Indonesia) Keputusan Menteri Dalam Negeri Nomor 050-145 Tahun 2022 tentang Pemberian dan Pemutakhiran Kode, Data Wilaya...

American animated web series Woody WoodpeckerGenreComedySlapstickBased onWoody Woodpeckerby Universal PicturesDeveloped byAlex ZammDirected byAlex Zamm (season 1)Mike Milo (seasons 2–present)Voices of Eric Bauza Tara Strong Tom Kenny Kevin Michael Richardson Nika Futterman Brad Norman (season 1) Dee Bradley Baker (seasons 2–present) Scott Weil Theme music composerAlex GeringasOpening themeWoody Woodpecker Songby George Tibbles & Ramey IdrissEnding themeTroublemakerby George Tribbles &...

 

 

ロバート・デ・ニーロRobert De Niro 2011年のデ・ニーロ生年月日 (1943-08-17) 1943年8月17日(80歳)出生地 アメリカ合衆国・ニューヨーク州ニューヨーク市身長 177 cm職業 俳優、映画監督、映画プロデューサージャンル 映画、テレビドラマ活動期間 1963年 -配偶者 ダイアン・アボット(1976年 - 1988年)グレイス・ハイタワー(1997年 - )主な作品 『ミーン・ストリート』(1973年)...

 

 

Tram route in metropolitan Melbourne, Victoria, Australia Route 16D1 class tram on Swanston Street, August 2022OverviewSystemMelbourneOperatorYarra TramsDepotMalvernVehicleZ classD1 classBegan service26 April 1936RouteStartMelbourne UniversityViaSwanston StreetSt Kilda RoadFitzroy StreetThe EsplanadeBalaclava RoadGlenferrie RoadEndKewLength20.2 kilometresTimetableRoute 16 timetableMapRoute 16 map Route map {{{map}}} ← Route 12  {{{system_nav}}}  Route 19 → Melbourne tr...

Sceaux 行政国 フランス地域圏 (Région) イル=ド=フランス地域圏県 (département) オー=ド=セーヌ県郡 (arrondissement) アントニー郡小郡 (canton) 小郡庁所在地INSEEコード 92071郵便番号 92330市長(任期) フィリップ・ローラン(2008年-2014年)自治体間連合 (fr) メトロポール・デュ・グラン・パリ人口動態人口 19,679人(2007年)人口密度 5466人/km2住民の呼称 Scéens地理座標 北緯48度4...

 

 

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

For other people named surname Saarelainen, see Saarelainen. This article is about Finnish curler. For Finnish farmer and politician, see Pekka Saarelainen. Finnish male curler Pekka SaarelainenCurler ♂Born (1967-03-17) 17 March 1967 (age 57)Helsinki, FinlandTeamCurling clubHyvinkää CCCurling career Member Association FinlandWorld Championshipappearances1 (2001)European Championshipappearances4 (1993, 1994, 2000, 2001)Olympicappearances1 (2002) Medal record Curling Euro...

 

 

Action du match Portugal-Maroc, lors de la Coupe du monde de la FIFA 2018. Article principal : Coupe du monde de football 2018. Cet article est une ébauche concernant une compétition de football et l’Europe. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Groupe B de la Coupe du monde 2018 Généralités Sport Football Organisateur(s) FIFA Date du 15 au 25 juin 2018 Participants 4 équipes nationales Ép...

 

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها.Learn how and when to remove this message سنوات 1943 1944 1945 1946 1947 علم سلوفاكيا الجدول الزمني لتاريخ سلوفاكيا فيما يلي قوائم الأحداث التي وقعت خلال عام 1945 في سلوفاكيا. سياسة انتهاء فترة المنصب 3 أبري...

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для планува...

 

 

Francisco PizarroLahirc. 1471 atau 1476Trujillo, Extremadura, SpanyolMeninggal26 Juni 1541Lima, PeruKebangsaanSpaniardPekerjaanConquistadorDikenal atasPenaklukan Amerika Selatan Francisco Pizarro adalah seorang conquistador (penakluk) yang dilahirkan di Trujillo, Spanyol pada sekitar 1475. Ia mengabdi di Italia dan bergabung dengan ekspedisi yang menemukan Samudera Pasifik (1513). Pada 1526 ia dan Diego de Almagro berlayar ke Peru, dan pada 1531 mulai penaklukan Kerajaan Inka. Ia membunuh ra...

 

 

  提示:此条目页的主题不是萧。 簫琴簫與洞簫木管樂器樂器別名豎吹、豎篴、通洞分類管樂器相關樂器 尺八 东汉时期的陶制箫奏者人像,出土於彭山江口汉崖墓,藏於南京博物院 箫又稱洞簫、簫管,是中國古老的吹管樂器,特徵為單管、豎吹、開管、邊稜音發聲[1]。「簫」字在唐代以前本指排簫,唐宋以來,由於單管豎吹的簫日漸流行,便稱編管簫爲排簫�...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Marjorie BonnerMajorie Bonner circa 1908LahirMarjorie Daw CollinsFebruary 23, 1893[1]Brooklyn, New York, A.S.MeninggalFebruary 16, 1979 (usia 85)Tampa, Florida, A.S.PekerjaanPenari, aktrisSuami/istriWilliam H. Power (1908-1942; hingga wafat) M...

 

 

فرناندو غابرييل غارسيا   معلومات شخصية الميلاد 31 أغسطس 1981 (العمر 42 سنة)بوينس آيرس الطول 1.90 م (6 قدم 3 بوصة)* مركز اللعب حارس مرمى الجنسية أرجنتيني الحياة العملية المهنة لاعب كرة يد  الرياضة كرة اليد  المنتخب الوطني الأعوام المنتخب الظهور (الأهداف) منتخب الأرجن�...