Unitary transformation (quantum mechanics)

In quantum mechanics, the Schrödinger equation describes how a system changes with time. It does this by relating changes in the state of the system to the energy in the system (given by an operator called the Hamiltonian). Therefore, once the Hamiltonian is known, the time dynamics are in principle known. All that remains is to plug the Hamiltonian into the Schrödinger equation and solve for the system state as a function of time.[1][2]

Often, however, the Schrödinger equation is difficult to solve (even with a computer). Therefore, physicists have developed mathematical techniques to simplify these problems and clarify what is happening physically. One such technique is to apply a unitary transformation to the Hamiltonian. Doing so can result in a simplified version of the Schrödinger equation which nonetheless has the same solution as the original.

Transformation

A unitary transformation (or frame change) can be expressed in terms of a time-dependent Hamiltonian and unitary operator . Under this change, the Hamiltonian transforms as:

.

The Schrödinger equation applies to the new Hamiltonian. Solutions to the untransformed and transformed equations are also related by . Specifically, if the wave function satisfies the original equation, then will satisfy the new equation.[3]

Derivation

Recall that by the definition of a unitary matrix, . Beginning with the Schrödinger equation,

,

we can therefore insert the identity at will. In particular, inserting it after and also premultiplying both sides by , we get

.

Next, note that by the product rule,

.

Inserting another and rearranging, we get

.

Finally, combining (1) and (2) above results in the desired transformation:

.

If we adopt the notation to describe the transformed wave function, the equations can be written in a clearer form. For instance, can be rewritten as

,

which can be rewritten in the form of the original Schrödinger equation,

The original wave function can be recovered as .

Relation to the interaction picture

Unitary transformations can be seen as a generalization of the interaction (Dirac) picture. In the latter approach, a Hamiltonian is broken into a time-independent part and a time-dependent part,

.

In this case, the Schrödinger equation becomes

, with .[4]

The correspondence to a unitary transformation can be shown by choosing . As a result,

Using the notation from above, our transformed Hamiltonian becomes

First note that since is a function of , the two must commute. Then

,

which takes care of the first term in the transformation in , i.e. . Next use the chain rule to calculate

which cancels with the other . Evidently we are left with , yielding as shown above.

When applying a general unitary transformation, however, it is not necessary that be broken into parts, or even that be a function of any part of the Hamiltonian.

Examples

Rotating frame

Consider an atom with two states, ground and excited . The atom has a Hamiltonian , where is the frequency of light associated with the ground-to-excited transition. Now suppose we illuminate the atom with a drive at frequency which couples the two states, and that the time-dependent driven Hamiltonian is

for some complex drive strength . Because of the competing frequency scales (, , and ), it is difficult to anticipate the effect of the drive (see driven harmonic motion).

Without a drive, the phase of would oscillate relative to . In the Bloch sphere representation of a two-state system, this corresponds to rotation around the z-axis. Conceptually, we can remove this component of the dynamics by entering a rotating frame of reference defined by the unitary transformation . Under this transformation, the Hamiltonian becomes

.

If the driving frequency is equal to the g-e transition's frequency, , resonance will occur and then the equation above reduces to

.

From this it is apparent, even without getting into details, that the dynamics will involve an oscillation between the ground and excited states at frequency .[4]

As another limiting case, suppose the drive is far off-resonant, . We can figure out the dynamics in that case without solving the Schrödinger equation directly. Suppose the system starts in the ground state . Initially, the Hamiltonian will populate some component of . A small time later, however, it will populate roughly the same amount of but with completely different phase. Thus the effect of an off-resonant drive will tend to cancel itself out. This can also be expressed by saying that an off-resonant drive is rapidly rotating in the frame of the atom.

These concepts are illustrated in the table below, where the sphere represents the Bloch sphere, the arrow represents the state of the atom, and the hand represents the drive.

Lab frame Rotating frame
Resonant drive
Resonant drive in the lab frame
Resonant drive in a frame rotating with the atom
Off-resonant drive
Off-resonant drive in the lab frame
Off-resonant drive in a frame rotating with the atom

Displaced frame

The example above could also have been analyzed in the interaction picture. The following example, however, is more difficult to analyze without the general formulation of unitary transformations. Consider two harmonic oscillators, between which we would like to engineer a beam splitter interaction,

.

This was achieved experimentally with two microwave cavity resonators serving as and .[5] Below, we sketch the analysis of a simplified version of this experiment.

In addition to the microwave cavities, the experiment also involved a transmon qubit, , coupled to both modes. The qubit is driven simultaneously at two frequencies, and , for which .

In addition, there are many fourth-order terms coupling the modes, but most of them can be neglected. In this experiment, two such terms which will become important are

.

(H.c. is shorthand for the Hermitian conjugate.) We can apply a displacement transformation, , to mode [clarification needed]. For carefully chosen amplitudes, this transformation will cancel while also displacing the ladder operator, . This leaves us with

.

Expanding this expression and dropping the rapidly rotating terms, we are left with the desired Hamiltonian,

.

It is common for the operators involved in unitary transformations to be written as exponentials of operators, , as seen above. Further, the operators in the exponentials commonly obey the relation , so that the transform of an operator is,. By now introducing the iterator commutator,

we can use a special result of the Baker-Campbell-Hausdorff formula to write this transformation compactly as,

or, in long form for completeness,

References

  1. ^ Sakurai, J. J.; Napolitano, Jim J. (2014). Modern Quantum Mechanics (Indian Subcontinent Version ed.). Pearson. pp. 67–72. ISBN 978-93-325-1900-8.
  2. ^ Griffiths, David J. (2005). Introduction to Quantum Mechanics (Second ed.). Pearson. pp. 24–29. ISBN 978-0-13-191175-8.
  3. ^ Axline, Christopher J. (2018). "Chapter 6" (PDF). Building Blocks for Modular Circuit QED Quantum Computing (Ph.D. thesis). Retrieved 4 August 2018.
  4. ^ a b Sakurai, pp. 346-350.
  5. ^ Yvonne Y. Gao; Brian J. Lester; et al. (21 June 2018). "Programmable Interference between Two Microwave Quantum Memories". Phys. Rev. X. 8 (2). Supplemental Material. arXiv:1802.08510. doi:10.1103/PhysRevX.8.021073. S2CID 3723797.

Read other articles:

Moldova NouăKota Lambang kebesaranLetak Moldova NouăNegara RumaniaProvinsiCaraş-SeverinStatusKotaPemerintahan • Wali kotaIon Chisalita (Partidul Democrat-Liberal)Luas • Total144 km2 (56 sq mi)Populasi (2002)[1] • Total13,917 • Kepadatan97/km2 (250/sq mi)Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST) Moldova Nouă (bahasa Hungaria: Újmoldova, Jerman: Neumoldowacode: de is deprecated...

 

 

Tanggal 30 Februari 1712 di Swedia Kalender Swedia adalah kalender yang digunakan di Swedia dan sebagian Finlandia yang menjadi koloni Swedia dari 1 Maret 1700 kalender Swedia (29 Februari 1700 kalender Julian) hingga 30 Februari 1712 kalender Swedia (29 Februari 1712 kalender Julian). Tanggal dalam kalender Swedia lebih cepat satu hari dibandingkan kalender Julian, tetapi terlambat 10 hari dibandingkan kalender Gregorian. Kalender ini digunakan untuk sementara sebagai kalender peralihan dari...

 

 

Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: Brian McFadden – berita · surat kabar · buku · cendekiawan · JSTOR (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Brian McFaddenMcFadden pada 2012LahirBrian Nic...

American pioneer, first Governor of Wisconsin For other people named Alexander Collins, see Alexander Collins (disambiguation). The HonorableAlexander L. CollinsWisconsin Circuit Court Judge for the 9th CircuitIn officeJanuary 1, 1856 – September 5, 1858Preceded byPosition EstablishedSucceeded byLuther S. DixonChairman of the Whig Party of WisconsinIn office1852–18542nd Village President of Madison, WisconsinIn office1847–1850Preceded byThomas W. SutherlandSucceeded byWilli...

 

 

Taman InokashiraTaman Inokashira saat musim sakura bermekaran.LokasiMusashino dan Mitaka, Tokyo, JapanArea385,84402 meter persegi (0,09534413 ekar)Dibuat1 Mei 1917 Taman Inokashira (井の頭恩賜公園code: ja is deprecated , Inokashira Onshi Kōen) adalah taman yang berada di antara Musashino dan Mitaka di sebelah barat Tokyo, Jepang. Telaga Inokashira (井の頭池code: ja is deprecated , Inokashira ike) dan sumber air sungai Kanda (神田上水code: ja is deprecated , Kanda jōsui), dibu...

 

 

Tali amben pelana Chili Tali amben, kadang-kadang disebut sabuk dada adalah peralatan yang digunakan untuk menjaga pelana tetap pada kuda atau hewan lainnya. Ia lewat di bawah laras kuda, diikatkan ke pelana di kedua sisinya dengan dua atau tiga tali kulit yang disebut billet.[1] Referensi ^ Moniteau Saddle Club Retrieved on 17 March 2009

Public university in Hawaii, US For the university system, see University of Hawaiʻi.University of Hawaiʻi at MānoaFormer nameCollege of Agriculture and Mechanic Arts of the Territory of Hawaiʻi (1907–1912)College of Hawaiʻi (1912–1919)University of Hawaiʻi (1919–1972)MottoMaluna aʻe o nā lāhui āpau ke ola ke kānaka (Hawaiian)[1] On seal: Mālamalama (Hawaiian)Motto in EnglishAbove all nations is humanity On seal: Enlightenment[2]TypePublic land-grant res...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

 

Spanish ballet dancer (born 1975) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Angel Corella – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this m...

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

 

 

Type of sports prototype race car DPi redirects here. Not to be confused with DPI or DP1. A 2018 DPi class competitor, the Acura ARX-05 A Daytona Prototype International (DPi) was a type of sports prototype racing car developed specifically for the International Motor Sports Association's WeatherTech SportsCar Championship, as their top class of car, acting as a direct replacement, and spiritual successor of the Daytona Prototypes. They are named after the main series event, the Rolex 24 at D...

 

 

Pemandangan Burj Al Arab dari Mina A'Salam di Al Sufouh 2 —— Permukiman di Uni Emirat Arab —— Al Sufouhالصفوح Negara Uni Emirat Arab Emirat Dubai Kota Dubai Jumlah daerah 372(Al Sufouh 1)382(Al Sufouh2) Statistik permukiman Luas 7.6 km² Jumlah penduduk 3,337[1] (2000) Kepadatan penduduk 439/km² Permukiman sekitarnya Al Barsha, Emirates Hills, Palm Jumeirah Dubai Metro station   University, Dubai Internet City  Koordinat 25°11′05″N 55°17�...

American conservative political website FrontPage MagazineFormatOnlineOwner(s)David Horowitz Freedom CenterEditor-in-chiefDavid HorowitzManaging editorJamie GlazovPolitical alignmentRight-wing to far-rightLanguageEnglishHeadquartersSherman Oaks, California, U.S.OCLC number47095728 Websitefrontpagemag.com FrontPage Magazine, also known as FrontPageMag.com, is an American right-wing,[1][2][3][4] anti-Islam[5][6] political website edited by David H...

 

 

Representation of a system using abstract graphic symbols This article is about technical illustrations. For other uses, see Schema. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Schematic – news · newspapers · books · scholar · JSTOR (October 2013) (Learn how and when to remove this message) Photomicrogra...

 

 

English writer and lecturer (1915–1973) Alan WattsBornAlan Wilson Watts(1915-01-06)6 January 1915Chislehurst, Kent, EnglandDied16 November 1973(1973-11-16) (aged 58)Marin County, California, U.S.Alma materSeabury-Western Theological SeminaryNotable workBehold the Spirit (1947)The Way of Zen (1957)Tao: The Watercourse Way (1975)Spouses Eleanor Everett ​ ​(m. 1938; div. 1949)​ Dorothy DeWitt ​ ​(m. 1950;...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 2019 EFL Trophy final – news · newspapers · books · scholar · JSTOR (March 2019) (Learn how and when to remove this message) Football match2019 EFL Trophy FinalMatch programme coverEvent2018–19 EFL Trophy Portsmouth Sunderland 2 2 After extra timePortsmouth ...

 

 

コロちゃん株式会社COROCHAN CO.,LTD.種類 株式会社市場情報 非上場本社所在地 日本〒509-7201岐阜県恵那市大井町2711-142設立 2000年5月業種 小売業事業内容 コロッケをはじめとする惣菜販売店「コロちゃんのコロッケ屋!」チェーン本部代表者 小竹守資本金 4億9千62万円売上高 27億円(2007年3月期)従業員数 32名(2007年8月現在)決算期 3月末特記事項:2007年8月13日自己破産[1&...

 

 

Human settlement in EnglandNewton-with-CliftonLychgate at St John the Evangelist ChurchNewton-with-CliftonShown within Fylde BoroughShow map of the Borough of FyldeNewton-with-CliftonShown within the FyldeShow map of the FyldeNewton-with-CliftonLocation within LancashireShow map of LancashirePopulation2,735 (2011)OS grid referenceSD4430Civil parishNewton-with-CliftonDistrictFyldeShire countyLancashireRegionNorth WestCountryEnglandSovereign stateUnited KingdomPost tow...

Kawasan Konservasi Perairan Daerah Kabupaten Pekalongan (KKPD Kabupaten Pekalongan) adalah salah satu kawasan konservasi perairan daerah yang ada di Jawa Tengah, Indonesia. Dalam pembagian administratif Indonesia, KKPD Kabupaten Pekalongan masuk dalam wilayah administratif Kabupaten Pekalongan. Dasar hukum penetapannya adalah Surat Keputusan Bupati Pekalongan Nomor 523/02.A Tahun 2013. Luas wilayah KKPD Kabupaten Pekalongan adalah 66,4 Hektare.[1] Seluruh wilayah KKPD Kabupaten Pekalo...

 

 

Toyota Carina Marque Toyota Années de production 1970 - 2001 Classe Familiale Moteur et transmission Moteur(s) Essence 1,6L - 1,8L et 2,0L Diesel 2,0L Chronologie des modèles Aucun Toyota AvensisToyota Allion modifier  La Toyota Carina est une familiale japonaise, produite de décembre 1970 à 2001. Elle est généralement considérée comme une version 4 portes de la Celica avec laquelle elle partage la plateforme. Cependant, les premières générations de Carina eurent également d...