The word entered English by way of either Swedish (trona) or Spanish (trona), with both possible sources having the same meaning as in English: the mineral natron from North Africa. Both the Spanish and Swedish[7] terms derive from the Arabic trōn, which in turn derives from Arabic natron and Hebrew נתרן (natruna), which comes from ancient Greekνιτρον (nitron), derived ultimately from ancient Egyptianntry (or nitry'’).[citation needed]
Trona has also been found in magmatic environments.[14] Research has shown that trona can be formed by autometasomatic reactions of late-magmatic fluids or melts (or supercritical fluid-melt mixtures), with earlier crystallized rocks within the same plutonic complex, or by large-scale vapor unmixing in the very final stages of magmatism.[14]
Crystal structure
The crystal structure of trona was first determined by Brown et al. (1949).[15] The structure consists of units of 3 edge-sharing sodium polyhedra (a central octahedron flanked by septahedra), cross-linked by carbonate groups and hydrogen bonds. Bacon and Curry (1956)[16] refined the structure determination using two-dimensional single-crystal neutron diffraction, and suggested that the hydrogen atom in the symmetric (HC2O6)3− anion is disordered. The environment of the disordered H atom was later investigated by Choi and Mighell (1982)[17] at 300 K with three-dimensional single-crystal neutron diffraction: they concluded that the H atom is dynamically disordered between two equivalent sites, separated from one another by 0.211(9) Å. The dynamically disordered H atom was reinvestigated at low temperature by O'Bannon et al. 2014 and they concluded that it does not order at temperatures as low as 100K.[18]
Uses
Trona is a common source of soda ash, which is a significant economic commodity because of its applications in manufacturing glass, chemicals, paper, detergents, and textiles.
^Choi, C. S.; Mighell, A. D. (1 November 1982). "Neutron diffraction study of sodium sesquicarbonate dihydrate". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 38 (11): 2874–2876. doi:10.1107/S0567740882010164.
^Manega, P.C., Bieda, S., 1987. Modern sediments of Lake Natron, Tanzania. Sciences Geologiques. Bulletin 40, 83–95.
^Eckardt, F. D., Drake, N., Goudie, A. S., White, K., & Viles, H. (2001). The role of playas in pedogenic gypsum crust formation in the Central Namib Desert: a theoretical model. Earth Surface Processes and Landforms, 26(11), 1177–1193.
^Helvaci, C., 1998. The Beypazari trona deposit, Ankara Province, Turkey. In: Dyni, J.R., Jones, R. W. (Eds.), Proceedings of the first international soda-ash conference; Volume II, v. 40: Laramie, WY, Public Information Circular – Geological Survey of Wyoming, pp. 67–103.
^Zhang, Youxun, 1985. Geology of the Wucheng trona deposit in Henan, China. In: Schreiber, B.C., Warner, H.L. (Eds.), Sixth international symposium on salt, 1, pp. 67–73.