Therapeutic ultrasound refers generally to the use of ultrasound for the treatment of a medical condition or for therapeutic benefit. Physiotherapeutic ultrasound was introduced into clinical practice in the 1950s, with lithotripsy introduced in the 1980s.[1] Other uses of ultrasound for therapeutic benefit are at various stages in transitioning from research to clinical use and include: high-intensity focused ultrasound (HIFU), targeted ultrasound drug delivery, trans-dermal ultrasound drug delivery, ultrasound hemostasis, cancer therapy, and ultrasound assisted thrombolysis[2][3] Ultrasound used for therapeutic benefit often use focused ultrasound waves, however, unfocused ultrasound waves may also be used.[4]
In the above applications, the ultrasound passes through human tissue where it is the main source of the observed biological effect (the oscillation of abrasive dental tools at ultrasonic frequencies therefore do not belong to this class). The ultrasound within tissue consists of very high frequency sound waves, between 800,000 Hz and 20,000,000 Hz, which cannot be heard by humans.
Some of the advantages of ultrasound as a diagnostic and therapeutic tool include its safety profile, lack of radiation, portability, and low cost.[4] Therapeutic ultrasound in medicine ranges from extracorporeal shockwave therapy for the breaking of renal calculi to HIFU in which tumors are ablated. In the research field, use of ultrasound is being explored as a mechanism of enhancing drug delivery, sorting particles, and measuring properties of tissue.[2][5][6] In physical therapy, there is some evidence that ultrasound is more effective than placebo treatment for treating patients with arthritis pain,[7] a range of musculoskeletal injuries[8] and for promoting tissue healing.[9]
Medical uses
Relatively high-energy ultrasound can break up stony deposits, ablate tissue, accelerate the effect of drugs in a targeted area, assist in the measurement of the elastic properties of tissue, and sort cells or small particles for research.[4][5]
Extracorporeal Shockwave Therapy
Extracorporeal shockwave therapy involves focused, high-energy ultrasound pulses that can be used to break solid masses into fragments.[10] This is often utilized to break up calculi such as kidney stones and gallstones into pieces small enough to be passed from the body without undue difficulty, a procedure known as lithotripsy. The success of lithotripsy depends on the size and location of the stone, and the patient's age.[10]
Oncology
Ultrasound can ablate tumors or other tissue non-invasively.[4] This is accomplished using a technique known as high intensity focused ultrasound (HIFU), also called focused ultrasound surgery. This procedure uses generally lower frequencies than medical diagnostic ultrasound (250–2000 kHz), but significantly higher time-averaged intensities. The treatment is often guided by magnetic resonance imaging (MRI); the combination is then referred to as magnetic resonance-guided focused ultrasound. In the clinical setting, HIFU techniques are currently being investigated to treat liver, kidney, and prostatic tumors.[11]
Ophthalmology
Focused ultrasound sources may be used for cataract treatment by phacoemulsification in which the internal lens of the eye is broken down into small pieces that may then be aspirated.[12] HIFU can also be used in ophthalmology to treat glaucoma.[13] This is accomplished by targeting the ultrasound beams to ablate the ciliary body.[13]
Drug Delivery
Delivering chemotherapy to brain cancer cells and various drugs to other tissues is called acoustic targeted drug delivery.[5] These procedures generally use high frequency ultrasound (1–10 MHz) and a range of intensities (0–20 W/cm2). The acoustic energy is focused on the tissue of interest to agitate the cellular matrix and make it more permeable for therapeutic drugs.[14]
Ultrasound has been used to trigger the release of anti-cancer drugs from delivery vectors including liposomes, polymeric microspheres and self-assembled polymeric.[15]
Phonophoresis is a form of soft tissue treatment that involves the use of ultrasound combined with medication gels to enhance drug delivery to the desired area.[16]
The first large scale application of ultrasound was around World War II. Sonar systems were being built and used to navigate submarines. It was realized that the high intensity ultrasound waves that they were using were heating and killing fish.[20] This led to research in tissue heating and healing effects. Since the 1940s, ultrasound has been used by physical and occupational therapists for therapeutic effects.[4]
Physical therapy
Ultrasound is applied using a transducer or applicator that is in direct contact with the patient's skin. Gel is used on all surfaces of the head to reduce friction and assist transmission of the ultrasonic waves. Therapeutic ultrasound in physical therapy is alternating compression and rarefaction of sound waves with a frequency of 0.7 to 3.3 MHz.[21] Maximum energy absorption in soft tissue occurs from 2 to 5 cm. Intensity decreases as the waves penetrate deeper. They are absorbed primarily by connective tissue: ligaments, tendons, and fascia (and also by scar tissue).[22]
Ultrasound has been used to help physical therapists navigate transcutaneous modalities that aim to stimulate specific muscles beneath the skin; modalities such as dry needling and acupuncture. The use of ultrasound provides a way for physical therapists to better locate superficial musculature.[23] Conditions for which ultrasound may be used for treatment include the following examples: ligament sprains, muscle strains, tendonitis, joint inflammation, plantar fasciitis, metatarsalgia, facet irritation, impingement syndrome, bursitis, rheumatoid arthritis, osteoarthritis, and scar tissue adhesion. There is no evidence to support the use of ultrasound for the treatment of low back pain,[24] and current clinical guidelines recommend that ultrasound is not used for this condition.[25] In a critical review, it was demonstrated that therapeutic ultrasound was effective in improving pain, function, and cartilage repair in knee osteoarthritis.[citation needed] Another systematic review and meta-analysis of low-intensity pulsed ultrasound on knee osteoarthritis demonstrated a significant effect on pain reduction and knee functional recovery.[26] Ultrasound used for calcific tendonitis had a positive short term effect. For the long term, there was no significant difference with ultrasound use. This shows that for pain relief and short-term treatment ultrasound can be an effective treatment for Calcific Tendonitis[27] A review with five small placebo‐controlled trials from 2011, did not support the use of ultrasound in the treatment of acute ankle sprains and the potential treatment effects of ultrasound appear to be generally small and of probably of limited clinical importance, especially in the context of the usually short‐term recovery period for these injuries.[28] However, therapeutic ultrasound is reported to have beneficial effects in sports injuries pain relief, edema control, and range of joint motion, possibly by increasing pain thresholds, collagen extensibility, reducing edema, and therefore inflammation, muscle spasms, and joint stiffness.[26] A meta-analysis found that ultrasound therapy is effective in reducing pain, increasing ROM, and reducing WOMAC functional scores in patients with knee osteoarthritis.[7]
There are three potential therapeutic mechanisms of ultrasound in physical therapy. The first is the increase in blood flow in the treated area.[4][21] The second is the decrease in pain from the reduction of swelling and edema.[21] The third is the gentle massage of muscle tendons and ligaments in the treated area because no strain is added and existing scar tissue may be softened with ultrasound.[21] These three benefits are achieved by two main effects of therapeutic ultrasound: thermal and non-thermal effects.[21] Thermal effects are due to the absorption of the sound waves and result in heating of biological tissue. Non-thermal effects are from cavitation, microstreaming and acoustic streaming.[29][21]
Cavitation is the main non-thermal effect of therapeutic ultrasound.[4][21] Cavitation results from the vibration of tissue causing microscopic bubbles to form. These microscopic bubbles may directly stimulate cell membranes and cause shockwaves within the tissue.[4] This physical stimulation appears to enhance the cell-repair effects of the inflammatory response.
Knee osteoarthritis
According to recent research, therapeutic ultrasound has not shown any significant improvement for chronic low back pain, chronic neck pain, and hip pain in combination with other physiotherapeutic techniques.[30][31] However, the most conclusive evidence to support therapeutic ultrasound use is seen with its use in patients with knee osteoarthritis. Knee osteoarthritis affects approximately 250 million people worldwide.[32] While there is no known cure, therapeutic regimens are often used to intervene with the diseases chronic symptoms.[32] In a systematic review of 15 studies, patients who received ultrasound treatments were compared to those who received a placebo treatment.[7] The evidence demonstrated that therapeutic ultrasound significantly relieved pain, increases range of motion, and reduced WOMAC functional scores in patients with knee osteoarthritis when compared to the placebo group.[7] In a separate meta-analysis, it reinforced the use of therapeutic ultrasound by deeming it as a safe non-pharmalogical treatment option that may provide additional pain relief as well as functional improvement when used secondarily to therapy in patients with knee osteoarthritis.[32]
Application of focused ultrasound in conjunction with microbubbles has been shown to enable non-invasive delivery of epirubicin across the blood–brain barrier in mouse models [2] and non-invasive delivery of GABA in non human primates.[6]
Biophysical Effects of Ultrasound
Using ultrasound to generate cellular effects in soft tissue has fallen out of favor as research has shown a lack of efficacy[1] and a lack of scientific basis for proposed biophysical effects.[34]
According to a 2017 meta-analysis and associated practice guideline, low intensity pulsed ultrasound should no longer been used for bone regeneration because high quality clinical studies failed to demonstrate a clinical benefit.[35][36]
Enhancing Drug Delivery
An additional effect of low-intensity ultrasound could be its potential to disrupt the blood–brain barrier for drug delivery.[37]
Ultrasound has been shown to act synergistically with antibiotics in killing bacteria.[38]
Musculoskeletal Research
Long-duration therapeutic ultrasound called sustained acoustic medicine is a daily slow-release therapy that can be applied to increase local circulation and theoretically accelerates healing of musculoskeletal tissues after an injury.[39] However, there is some evidence to suggest this may not be effective.[1]
Ultrasound has been shown to contribute to improvement of muscular strength of the forearm muscles and humerus muscles and an increase in range of motion in the elbow joint in flexion and outward rotation when accompanied with therapeutic exercise as well as a reduction in pain in men ages 30-40 with tendinitis[40]
^ abcdefghMatthews, Michael J.; Stretanski, Michael F. (2024), "Ultrasound Therapy", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID31613497, retrieved 2024-11-11
^ abcdWu Y, Zhu S, Lv Z, Kan S, Wu Q, Song W, et al. (December 2019). "Effects of therapeutic ultrasound for knee osteoarthritis: a systematic review and meta-analysis". Clinical Rehabilitation. 33 (12): 1863–1875. doi:10.1177/0269215519866494. PMID31382781. S2CID199452082.
^Wu Y, Zhu S, Lv Z, Kan S, Wu Q, Song W, et al. (December 2019). "Effects of therapeutic ultrasound for knee osteoarthritis: a systematic review and meta-analysis". Clinical Rehabilitation. 33 (12): 1863–1875. doi:10.1177/0269215519866494. PMID31382781. S2CID199452082.
^ abPapadopoulos ES, Mani R (December 2020). "The Role of Ultrasound Therapy in the Management of Musculoskeletal Soft Tissue Pain". The International Journal of Lower Extremity Wounds. 19 (4): 350–358. doi:10.1177/1534734620948343. PMID32856521. S2CID221358210.
^Aiyer R, Noori SA, Chang KV, Jung B, Rasheed A, Bansal N, et al. (November 2020). "Therapeutic Ultrasound for Chronic Pain Management in Joints: A Systematic Review". Pain Medicine. 21 (7): 1437–1448. doi:10.1093/pm/pnz102. PMID31095336.
^Noori SA, Rasheed A, Aiyer R, Jung B, Bansal N, Chang KV, et al. (November 2020). "Therapeutic Ultrasound for Pain Management in Chronic Low Back Pain and Chronic Neck Pain: A Systematic Review". Pain Medicine. 21 (7): 1482–1493. doi:10.1093/pm/pny287. PMID30649460.
Lily FrankyLily Franky di acara pembukaan Tokyo International Film Festival, 2017.LahirMasaya Nakagawa4 November 1963 (umur 60)Fukuoka, JepangNama lainElvis WoodstockPekerjaanAktor, penulis, ilustrator, desainer, musikus, penulis lagu, fotografer, kritikusTahun aktif1980-an–sekarangTinggi174 cm (5 ft 9 in) Lily Franky (リリー・フランキーcode: ja is deprecated , rirī furankī, nama lahir: Masaya Nakagawa (中川 雅也code: ja is deprecated , Nakagawa...
Arso JovanovićJovanović pada 1943Nama lahirArsenije JovanovićJulukanArsoLahir24 Maret 1907Zavala dekat Podgorica, MontenegroMeninggal12 Agustus 1948(1948-08-12) (umur 41)Pengabdian Kerajaan Yugoslavia YugoslaviaDinas/cabangDF Yugoslavia, FPR YugoslaviaLama dinas1924–1948PangkatJolonel JenderalKomandanKetua Staf UmumPerang/pertempuran Perang Dunia II di Yugoslavia: Pemberontakan Montenegro Pertempuran Pljevlja Arsenije Arso Jovanović (bahasa Serbia: Арсо Јо�...
Gea heptagon Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Arachnida Ordo: Araneae Famili: Araneidae Spesies: Gea heptagon Nama binomial Gea heptagonHentz, 1850 Gea heptagon adalah spesies laba-laba yang tergolong famili Araneidae. Spesies ini juga merupakan bagian dari ordo Araneae. Nama ilmiah dari spesies ini pertama kali diterbitkan pada tahun 1850 oleh Hentz. Laba-laba ini biasanya banyak ditemui di Amerika Sarikat hingga Argentina, South Pacific Islands, Australia. Ref...
Hiroshi Teshigahara Hiroshi Teshigahara (lahir, 28 Januari 1927 di Chiyoda, Tokyo, Jepang dan meninggal, 14 April 2001 di Tokyo, Jepang) adalah seorang pembuat film, Ia berpaling ke film sebagai perpanjangan eksplorasi estetika dalam media lain.[1][2] Hiroshi Teshigahara lahir sebagai putra Sofu Teshigahara yang merupakan pendiri dari Sogetsu School of Ikebana (Flower arrengement).[2] Teshigahara menikah dengan Toshiko Kobayashi hingga akhir hayatnya dan dikaruniani du...
Time-trial competition in the sport of rowing For the channel of water drawn in by a watermill, see Mill race. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Head race – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Eights racing at the Head...
Stasiun Chikatetsu-narimasu地下鉄成増駅Pintu keluar 4 Stasiun Chikatetsu-Narimasu, Mei 2012LokasiPrefekturTokyo(Lihat stasiun lainnya di Tokyo)Distrik kotaItabashiAlamat2-11-3 NarimasuKode pos175-0094Alamat dalam bahasa Jepang東京都板橋区成増2-11-3SejarahDibuka1983Nama sebelumnyaEidan-Narimasu StationNama sekarang digunakan sejak2004Layanan kereta apiNomor stasiunF-02, Y-02OperatorTokyo MetroJalurJalur YūrakuchōJalur Fukutoshin Stasiun Chikatetsu-narimasu (地下鉄成増駅co...
Community of Russian emigrants For Russosphere, see Geographical distribution of Russian speakers. Map of the Russian diaspora. Russia > 1,000,000 > 100,000 > 10,000 > 1,000 The Russian diaspora is the global community of ethnic Russians. The Russian-speaking (Russophone) diaspora are the people for whom Russian language is the native language, regardless of whether they are ethnic Russians or not. History This section ne...
LadroL'Uomo Ragno e il Ladro, disegni di John Romita Sr. UniversoUniverso Marvel Nome orig.Burglar Lingua orig.Inglese AutoriStan Lee Steve Ditko EditoreMarvel Comics 1ª app.agosto 1962 1ª app. inAmazing Fantasy (vol. 1[1]) n. 15 Editore it.Editoriale Corno 1ª app. it.30 aprile 1970 1ª app. it. inL'Uomo Ragno n. 1 Interpretato daMichael Papajohn [2] Leif Gantvoort [3] Caratteristiche immaginarieAlter egoDennis Carradine Specieumano SessoM...
Museum Sejarah Alam BeijingDidirikan1951LokasiDistrik Dongcheng, Beijing, TiongkokKoordinat39°52′54″N 116°23′38″E / 39.88167°N 116.39389°E / 39.88167; 116.39389Koordinat: 39°52′54″N 116°23′38″E / 39.88167°N 116.39389°E / 39.88167; 116.39389JenisMuseum Sejarah AlamSitus webhttp://www.bmnh.org.cn Aula Mesozoikum di Museum Sejarah Alam Beijing. Museum Sejarah Alam Beijing (MSAB) (Hanzi: 北京自然博物馆) terletak di...
John McCain Senator Amerika Serikat dari ArizonaMasa jabatan3 Januari 1987 – 25 Agustus 2018PendahuluBarry GoldwaterPenggantiKosongKetua Komite Angkatan Bersenjata SenatMasa jabatan3 Januari 2015 – 25 Agustus 2018PendahuluCarl LevinPenggantiKosongKetua Komite Urusan Indian SenatMasa jabatan3 Januari 2005 – 3 Januari 2007PendahuluBen Nighthorse CampbellPenggantiByron DorganMasa jabatan3 Januari 1995 – 3 Januari 1997PendahuluDaniel InouyePenggantiBen ...
17°55′42″N 43°15′56″E / 17.92833°N 43.26556°E / 17.92833; 43.26556 (جبل وراب) جبل فرواع الموقع السعودية المنطقة منطقة عسير إحداثيات 17°55′42″N 43°15′56″E / 17.928333333333°N 43.265555555556°E / 17.928333333333; 43.265555555556 تعديل مصدري - تعديل جبل فرواع هو أعلى جبل في السعودية، يقع على...
List of options or commands within a computer program This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Menu computing – news · newspapers · books · scholar · JSTOR (September 2021) (Learn how and when to remove this message) A drop-down menu of file operations in a Microsoft Windows program In user inter...
Anne in 2023 Anne, Princess Royal has received numerous titles, decorations, and honorary appointments as a member of the British royal family and the sister of King Charles III of the United Kingdom and the other Commonwealth realms. Each is listed below; where two dates are shown, the first indicates the date of receiving the title or award (the title as Princess Anne of Edinburgh being given as from her birth) and the second indicates the date of its loss or renunciation. Royal and noble ...
Aurelio Drago Deputato del Regno d'ItaliaLegislaturaXXIV, XXV, XXVI GruppoparlamentareSocialista riformista CollegioCefalù; Palermo Sito istituzionale Senatore del Regno d'ItaliaDurata mandato17 aprile 1939 – LegislaturaXXX Incarichi parlamentariCommissione dei lavori pubblici e delle comunicazioni Sito istituzionale Dati generaliTitolo di studioLaurea in ingegneria ProfessioneIngegnere Aurelio Drago (Naso, 21 gennaio 1873 – Palermo, 27 luglio 1955) è stato ...
South Korean actor (born 1987) In this Korean name, the family name is Moon. In the stage name or pen-name, the surname is Joo. Joo WonBornMoon Joon-won (1987-09-30) September 30, 1987 (age 36)Seoul, South KoreaEducationSungkyunkwan University - Film and TelevisionKonkuk University Graduate School of Mass CommunicationOccupation(s)Actor, singerYears active2010–presentAgentGhost StudioKorean nameHangul주원Hanja周元Revised RomanizationJu-wonMcCune–ReischauerChuwŏnBirth nameHa...
American colonial (1685–1757) Spencer PhipsLieutenant Governor of the Province of Massachusetts BayIn officeAugust 8, 1732 – April 4, 1757Preceded byWilliam TailerSucceeded byThomas HutchinsonActing Governor of the Province of Massachusetts BayIn officeSeptember 15, 1749 – August 7, 1753Preceded byWilliam ShirleySucceeded byWilliam ShirleyIn officeSeptember 25, 1756 – April 4, 1757Preceded byWilliam ShirleySucceeded byMassachusetts Governor's Council (a...
LarsaTell Senkereh Localisation Pays Irak Province Dhi Qar Coordonnées 31° 17′ 09″ nord, 45° 51′ 13″ est Géolocalisation sur la carte : Irak LarsaLarsa modifier Carte de la Mésopotamie avec les frontières des États modernes, l'ancien tracé du littoral du golfe Persique et les sites des grandes cités antiques. Localisation des principales cités de Mésopotamie à l'époque historique. Larsa (ou Larag ou Larak), qui est appelé aujourd...
Questa voce sull'argomento calciatori cileni è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Manuel NeiraNazionalità Cile Altezza175 cm Peso74 kg Calcio RuoloAttaccante Termine carriera2012 CarrieraSquadre di club1 1994-1995 Colo-Colo8 (0)1996 CD Everton21 (11)1997-1999 Colo-Colo30 (15)1999-2000 Las Palmas17 (4)2000-2001 Racing Club9 (2)2001 Unión Española17 (11)20...
1791 treaty between the U.S. and the Cherokees For other uses of Holston, see Holston (disambiguation). For the 1777 Treaty of Fort Henry, see Cherokee–American wars § Treaties of 1777. Statue representing the signing of the Treaty of the Holston in Downtown KnoxvilleThe Treaty of Holston (or Treaty of the Holston) was a treaty between the United States government and the Cherokee signed on July 2, 1791, and proclaimed on February 7, 1792. It was negotiated and signed by William Bloun...
Period of Italian history (1922–1943) This article is about the Kingdom of Italy under Fascist rule. For the puppet state of Nazi Germany from 1943–1945, see Italian Social Republic. Fascist ItalyItalia fascista (Italian)1922–1943 Flag Coat of arms(1929–1943) Motto: FERT(Motto for the House of Savoy)Anthem: (1861–1943)Marcia Reale d'Ordinanza(Royal March of Ordinance)Marcia Reale(1924–1943)Giovinezza(Youth)[a]All territory ever controlled by Fascist Italy: &...