Theory of the second best

In welfare economics, the theory of the second best concerns the situation when one or more optimality conditions cannot be satisfied.[1] The economists Richard Lipsey and Kelvin Lancaster showed in 1956 that if one optimality condition in an economic model cannot be satisfied, it is possible that the next-best solution involves changing other variables away from the values that would otherwise be optimal.[2] Politically, the theory implies that if it is infeasible to remove a particular market distortion, introducing one or more additional market distortions in an interdependent market may partially counteract the first, and lead to a more efficient outcome.[3]

Implications

In an economy with some uncorrectable market failure in one sector, actions to correct market failures in another related sector with the intent of increasing economic efficiency may actually decrease overall economic efficiency. In theory, at least, it may be better to let two market imperfections cancel each other out rather than making an effort to fix either one. Thus, it may be optimal for the government to intervene in a way that is contrary to usual policy. This suggests that economists need to study the details of the situation before jumping to the theory-based conclusion that an improvement in market perfection in one area implies a global improvement in efficiency.[4]

Application

Even though the theory of the second best was developed for the Walrasian general equilibrium system, it also applies to partial equilibrium cases.

References

  1. ^ Heath, Joseph (2009). Filthy lucre : economics for people who hate capitalism. Toronto: HarperCollins. ISBN 978-1-55468-769-5. OCLC 615371821.
  2. ^ Lipsey, R. G.; Lancaster, Kelvin (1956). "The General Theory of Second Best". Review of Economic Studies. 24 (1): 11–32. doi:10.2307/2296233. JSTOR 2296233.
  3. ^ Krugman, Paul (June 22, 2014). "The Big Green Test - Conservatives and Climate Change". The New York Times. Retrieved 27 June 2014.
  4. ^ "Making the second best of it". Free Exchange. Economist. August 21, 2007. Retrieved 27 June 2014.

Read other articles:

Charlbi DeanDean di Festival Film Cannes 2022LahirCharlbi Dean Kriek(1990-02-05)5 Februari 1990Cape Town, Afrika SelatanMeninggal29 Agustus 2022(2022-08-29) (umur 32)New York City, Amerika SerikatPekerjaanAktrismodelTahun aktif2003–2022PasanganLuke Volker (2018–2022) Charlbi Dean Kriek (/ˈʃɑːrlbi/ SHARL-bee;[1] 5 Februari 1990 – 29 Agustus 2022) adalah seorang aktris dan model asal Afrika Selatan.[2] Dia terkenal karena perannya dalam film se...

 

Pour les articles homonymes, voir Voyage au centre de la Terre (homonymie). Voyage au centre de la Terre Dessin de Riou illustrant l'édition originale. Auteur Jules Verne Pays France Genre Roman d'aventures Éditeur Pierre-Jules Hetzel Collection Voyages extraordinaires Date de parution 25 novembre 1864 Illustrateur Édouard Riou Chronologie Les Aventures du capitaine Hatteras De la Terre à la Lune modifier  Voyage au centre de la Terre est un roman d'aventures, écrit en 1864 par Jul...

 

Untuk wasit kriket Afghanistan, lihat Ahmed Shah Durrani (wasit). Ahmad Shah Durraniاحمد شاه درانيBerkas:Afghan-DurrArms.jpgPadishahGhaziShah dari Kekaisaran DurraniDurr-i-Durrani (Mutiara dari Segala Mutiara)Kaisar Kekaisaran Durrani ke-1Berkuasa1747–1772 (25 tahun kekuasaan)PenobatanOktober 1747PendahuluHussain HotakPenerusTimur Shah DurraniInformasi pribadiKelahiransekitar 1722Herat, AfghanistanKematian16 Oktober 1772Maruf, Provinsi Kandahar, Kekaisaran DurraniPemakamanKandah...

Con il termine idrato, usato nella chimica inorganica e nella chimica organica, si indica una sostanza contenente acqua. Lo stato chimico dell'acqua varia ampiamente tra gli idrati, alcuni dei quali vennero così etichettati ancor prima che la loro struttura chimica venisse compresa. Con il termine idrato, in passato, si indicavano spesso gli idrossidi, particolarmente degli elementi alcalini e alcalino terrosi, ad esempio l'idrato di potassio, ottenibili chimicamente per aggiunta di acqua al...

 

For the song, see Have I Got a Deal for You (song). 1985 studio album by Reba McEntireHave I Got a Deal for YouStudio album by Reba McEntireReleasedJune 10, 1985RecordedJanuary 1985StudioEmerald Sound Studio(Nashville, Tennessee)GenreCountryLength31:19LabelMCAProducerJimmy BowenReba McEntireReba McEntire chronology The Best of Reba McEntire(1985) Have I Got a Deal for You(1985) Reba Nell McEntire(1986) Singles from Have I Got a Deal for You Have I Got a Deal for YouReleased: May 1985 ...

 

Ducato di AstiInformazioni generaliCapoluogoAsti Dipendente daRegno longobardo AmministrazioneForma amministrativaDucato Ducavedi qui Evoluzione storicaInizio569 con Gundoaldo Fine744 con Aliprando di Asti CausaConquista franca Preceduto da Succeduto da Esarcato di Ravenna Contea di Asti Arte longobarda, lastrine dello scudo di Stabio, cavaliere, VII secolo Il Ducato di Asti fu uno dei ducati istituiti dai Longobardi in Italia. Scarse le informazioni sulle sue vicende interne, e incerta perfi...

梅拉蒂·达伊瓦·奥克塔维亚尼Melati Daeva Oktavianti基本資料代表國家/地區 印度尼西亞出生 (1994-10-28) 1994年10月28日(29歲)[1] 印度尼西亞万丹省西冷[1]身高1.68米(5英尺6英寸)[1]握拍右手[1]主項:女子雙打、混合雙打職業戰績48勝–27負(女雙)109勝–56負(混雙)最高世界排名第4位(混雙-普拉文·喬丹)(2020年3月17日[2])現時世界排名第...

 

Бумажная одежда (англ. paper clothing) — одежда, созданная полностью или частично из бумаги. Подобного рода наряды стали популярными во второй половине 1960-х годов на волне интереса модельеров и потребителей к нетрадиционным материалам, использующимся в производстве одеж�...

 

Politics of Malta Republic Constitution President (list) George Vella Government Prime Minister (list) Robert Abela Deputy Prime Minister (list) Chris Fearne Cabinet (current) Parliament Speaker (list) Angelo Farrugia Deputy Speaker (list) David Agius Leader of the House (list) Owen Bonnici Leader of the Opposition (list) Bernard Grech Judiciary Chief Justice (list) Mark Chetcuti Law Courts and Tribunals Commission for theAdministration of Justice Political parties Labour Party Nationalist P...

Rajiv RaiRajiv Rai (tengah) dengan Arjun Rampal dan Priyanka Chopra pada peluncuran musik Asambhav (2004).Lahir18 Juli 1955 (umur 68)PekerjaanSutradaraTahun aktif1982–2004Dikenal atasTridev (1989)Mohra (1994)Gupt (1997)Pyaar Ishq Aur Mohabbat (2001)Suami/istriSonam (bercerai)Anak1 Rajiv Rai (lahir 18 Juli 1955) adalah seorang penulis, penyunting dan sutradara asal India. Ia adalah putra dari produser Gulshan Rai. Referensi Pranala luar Rajiv Rai di IMDb (dalam bahasa Inggris) Pen...

 

Rosa Lappi-SeppäläNazionalità Finlandia Calcio RuoloAttaccante Termine carriera2008 (calciatrice) CarrieraGiovanili 1981-2003 Käpylän Pallo1987-1988 Puotinkylän Valtti1989 HJK Squadre di club1 1989-1999 HJK? (?)1999-2000 Torino20 (6)2000-2001 Foroni25 (14)2001-2002 Fiammamonza14 (6)2002-2003 ACF Milan? (?)2003-200? HJK? (?) Espoo? (?) Åland United? (?)-2008 Puistola Athletes? (?) Nazionale 1999-2007 Finlandia21 (1) Carriera da allenator...

 

Chemical compound Not to be confused with thienobenzodiazepine or thienodiazepine. Core structure of thienotriazolodiazepines A thienotriazolodiazepine[1] is a heterocyclic compound containing a diazepine ring fused to thiophene and triazole rings. Thienotriazolodiazepine forms the central core of several pharmaceutical drugs including: α-Hydroxyetizolam Brotizolam Ciclotizolam Clotizolam Deschloroclotizolam Deschloroetizolam Etizolam Flubrotizolam Fluclotizolam Fluetizolam Metizolam...

Pertempuran SurabayaBagian dari Revolusi Nasional IndonesiaTentara India Britania menembaki penembak runduk Indonesia di balik tank Indonesia dalam pertempuran di Surabaya, November 1945.Tanggal27 Oktober – 20 November 1945(3 minggu dan 3 hari)LokasiSurabaya, IndonesiaHasil kemenangan Britania Britania perlahan berhenti membantu Belanda mendirikan kembali koloninya di Indonesia dan menjadi netral. Britania kemudian mendukung perjuangan kemerdekaan Indonesia.Perubahanwilaya...

 

فوجيانمعلومات عامةجزء من Southeast China (en) الاسم الرسمي 福建省 (بالصينية) البلد الصين[1] العاصمة فوزهو تقع في التقسيم الإداري الصين المنطقة الزمنية ت ع م+08:00 الإحداثيات 25°54′N 118°18′E / 25.9°N 118.3°E / 25.9; 118.3 أعلى قمة Mount Huanggang (en) ممثل رئيس الحزب Zhou Zuyi (en) رئيس الحكومة Su Shulin (en...

 

Vidal de Canellasvescovo della Chiesa cattolicaVetrata raffigurante mons. Vidal de Canellas  Incarichi ricopertiVescovo di Huesca (1237-1252)  Nato1190 circa a Canyelles Ordinato presbiteroin data sconosciuta Nominato vescovo1237 da papa Gregorio IX Consacrato vescovo1237/1238 dal vescovo Pedro Albalat, O.Cist. (poi arcivescovo) Decedutodopo il 12 ottobre 1252 a Huesca   Manuale Vidal de Canellas (Canyelles, 1190 circa – Huesca, dopo il 12 ottobre 1252) è stato un vescovo ca...

كارا (بالفرنسية: Kara Mbodj)‏  معلومات شخصية الاسم الكامل سيرين مودو كارا مبودجي الميلاد 11 نوفمبر 1989 (العمر 34 سنة)دياسي، السنغال الطول 1.92 م (6 قدم 3 1⁄2 بوصة) مركز اللعب مدافع / وسط ملعب مدافع الجنسية السنغال  معلومات النادي النادي الحالي السيلية الرقم 14 مسيرة الش...

 

Partially ordered set in which all subsets have both a supremum and infimum The complete subgroup lattice for D4, the dihedral group of the square. This is an example of a complete lattice. In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only pairs of elements need to have a ...

 

Disambiguazione – Se stai cercando altri significati, vedi 1897 (disambigua). XVIII secolo · XIX secolo · XX secolo Anni 1870 · Anni 1880 · Anni 1890 · Anni 1900 · Anni 1910 1893 · 1894 · 1895 · 1896 · 1897 · 1898 · 1899 · 1900 · 1901 Il 1897 (MDCCCXCVII in numeri romani) è un anno del XIX secolo. 1897 negli altri calendariCalendario gregoriano1897 Ab Urbe condita2650 (MMDCL) Calendario armeno...

Ritratto di Seijun Suzuki Seijun Suzuki (鈴木 清順?, Suzuki Seijun), pseudonimo di Seitarō Suzuki (鈴木 清太郎?, Suzuki Seitarō; Tokyo, 24 maggio 1923 – Tokyo, 13 febbraio 2017), è stato un regista giapponese. Indice 1 Biografia 2 Filmografia 3 Altri progetti 4 Collegamenti esterni Biografia Tra il 1956 e il 1967 realizzò circa 40 film (principalmente B-movie di genere yakuza) per la casa di produzione Nikkatsu. Durante questi anni il suo stile si fece sempre più surreale e ar...

 

Parliamentary constituency in Jamaica The constituency is number 5 on this map. Westmoreland Eastern is a parliamentary constituency represented in the House of Representatives of the Jamaican Parliament. It elects one Member of Parliament by the first past the post system of election. The constituency consists of the eastern part of Westmoreland Parish. It is represented by Jamaica Labour Party MP Daniel Lawrence. In the 1989 general election, the constituency was covered by Westmoreland Nor...