Teo Mora
Italian mathematician
Ferdinando 'Teo' Mora [ a] is an Italian mathematician , and since 1990 until 2019 a professor of algebra at the University of Genoa .
Life and work
Mora's degree is in mathematics from the University of Genoa in 1974.[ 1] Mora's publications span forty years; his notable contributions in computer algebra are the
tangent cone algorithm[ 2] [ 3] and its extension of Buchberger theory of Gröbner bases and related algorithm earlier[ 4] to non-commutative polynomial rings [ 5] and more recently[ 6] to effective rings; less significant[ 7] the notion of Gröbner fan ; marginal, with respect to the other authors, his contribution to the FGLM algorithm .
Mora is on the managing-editorial-board of the journal AAECC published by Springer ,[ 8] and was also formerly an editor of the Bulletin of the Iranian Mathematical Society .[ b]
He is the author of the tetralogy Solving Polynomial Equation Systems :
Personal life
Mora lives in Genoa .[ 11] Mora published a book trilogy in 1977-1978 (reprinted 2001-2003) called Storia del cinema dell'orrore [it ] on the history of horror films .[ 11] Italian television said in 2014 that the books are an "authoritative guide with in-depth detailed descriptions and analysis."[ 12]
See also
References
^ a b
University of Genoa faculty-page .
^ An algorithm to compute the equations of tangent cones ; An introduction to the tangent cone algorithm .
^ Better algorithms due to Greuel-Pfister and Gräbe are currently available.
^ Gröbner bases for non-commutative polynomial rings .
^ Extending the proposal set by George M. Bergman .
^ De Nugis Groebnerialium 4: Zacharias, Spears, Möller , Buchberger–Weispfenning theory for effective associative rings ; see also Seven variations on standard bases .
^ The result is a weaker version of the result presented
in the same issue of the journal
by Bayer and Morrison.
^
Springer-Verlag website .
^ a b David P. Roberts (UMN ) (September 14, 2006). "[Review of the book] Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy [and also Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology]" . Mathematical Association of America Press.
^ S. C. Coutinho (UFRJ ) (March 2009). "Review of solving polynomial equation systems II: Macaulay's paradigm and Gröbner technology by Teo Mora (Cambridge University Press 2005)" (PDF) . ACM SIGACT News . 40 (1): 14– 17. doi :10.1145/1515698.1515702 . S2CID 12448065 – via ACM Digital Library.
^ a b Giovanni Bogani (December 11, 2002). "O tempora, O... Teo Mora" . Genoa, Italy : Repubblica.it . ...Teo Mora vive a Genova. ...scritto libri come La madre di tutte le dualità: l'algoritmo di Moeller , Il teorema di Kalkbrenner , o L'algoritmo di Buchberger ... Negli [1977] anni '70, Mora aveva scritto una monumentale Storia del cinema horror . ... la [2001] ripropone, in una nuova edizione, riveduta, corretta e completamente aggiornata. ...Nel primo volume... fino al 1957... Nosferatu , attori come Boris Karloff e Bela Lugosi ... film come Il gabinetto del dottor Caligari . ...Nel secondo volume si arriva fino al 1966... Roger Corman ... Il terzo volume arriva fino al 1978... Brian De Palma , David Cronenberg , George Romero , Dario Argento , Mario Bava . ... Translation: "...Teo Mora lives in Genoa . ...written works include The Mother of All Dualities: The Möller Algorithm , The Kalkbrenner Theorem , and The Buchberger Algorithm ... In the 1970s, Mora wrote the monumental History of Horror Cinema . ...reprinted [in 2001], as a new edition: revised, corrected, and completely updated. Two volume are already out, the third [volume] will be released in late January [2002], the fourth [volume] in spring 2003. ... In the first volume... [covering] through 1957... Nosferatu , actors like Boris Karloff and Bela Lugosi ... films like The Cabinet of Dr. Caligari . ...The second volume covers until 1966... Roger Corman , director ...The third volume covers through 1978... Brian De Palma , David Cronenberg , George Romero , Dario Argento , Mario Bava . ..."
^ "Mostri Universal" [The Universal Pictures monsters]. No. 20. RAI 4, Radiotelevisione Italiana . September 12, 2014. ...[text:] L'intervista — Teo Mora: Professore di Algebra presso il dipartimento di Informatica e Scienze dell'Informazione dell'Università di Genova, è anche un noto esperto di cinema horror. Ha curato Storia del cinema dell'orrore , un'autorevole guida in tre volumi con approfondimenti, schede e analisi dettagliate sui film, i registi e gli attori... [multimedia: video content] ... Translation: "...[text:] professor of Algebra in the Computer and Information Science department of the University of Genoa , also a well-known expert on horror films. His book Storia del cinema dell'orrore is an authoritative guide with in-depth detailed descriptions and analysis of films, directors, and actors... [multimedia: video content] ..."
Notes
Further reading
Teo Mora (1977). Storia del cinema dell'orrore . Vol. 1. Fanucci . ISBN 978-88-347-0800-2 . . "Second" . and "third" . volumes: ISBN 88-347-0850-4 , ISBN 88-347-0897-0 . Reprinted 2001.
George M Bergman (1978). "The diamond lemma for ring theory" . Advances in Mathematics . 29 (2): 178– 218. doi :10.1016/0001-8708(78)90010-5 .
F. Mora (1982). "An algorithm to compute the equations of tangent cones". Computer Algebra: EUROCAM '82, European Computer Algebra Conference, Marseilles, France, April 5-7, 1982 . Lecture Notes in Computer Science. Vol. 144. pp. 158– 165. doi :10.1007/3-540-11607-9_18 . ISBN 978-3-540-11607-3 .
F. Mora (1986). "Groebner bases for non-commutative polynomial rings". Algebraic Algorithms and Error-Correcting Codes: 3rd International Conference, AAECC-3, Grenoble, France, July 15-19, 1985, Proceedings (PDF) . Lecture Notes in Computer Science. Vol. 229. pp. 353– 362. doi :10.1007/3-540-16776-5_740 . ISBN 978-3-540-16776-1 .
David Bayer; Ian Morrison (1988). "Standard bases and geometric invariant theory I. Initial ideals and state polytopes" . Journal of Symbolic Computation . 6 (2– 3): 209– 218. doi :10.1016/S0747-7171(88)80043-9 .
also in: Lorenzo Robbiano, ed. (1989). Computational Aspects of Commutative Algebra . Vol. 6. London : Academic Press .
Teo Mora (1988). "Seven variations on standard bases" .
Gerhard Pfister; T.Mora; Carlo Traverso (1992). Christoph M Hoffmann (ed.). "An introduction to the tangent cone algorithm" . Issues in Robotics and Nonlinear Geometry (Advances in Computing Research) . 6 : 199– 270.
T. Mora (1994). "An introduction to commutative and non-commutative Gröbner bases" . Theoretical Computer Science . 134 : 131– 173. doi :10.1016/0304-3975(94)90283-6 .
Hans-Gert Gräbe (1995). "Algorithms in Local Algebra" . Journal of Symbolic Computation . 19 (6): 545– 557. doi :10.1006/jsco.1995.1031 .
Gert-Martin Greuel; G. Pfister (1996). "Advances and improvements in the theory of standard bases and syzygies". CiteSeerX 10.1.1.49.1231 .
M.Caboara, T.Mora (2002). "The Chen-Reed-Helleseth-Truong Decoding Algorithm and the Gianni-Kalkbrenner Gröbner Shape Theorem" . Journal of Applicable Algebra . 13 (3): 209– 232. doi :10.1007/s002000200097 . S2CID 2505343 .
M.E. Alonso; M.G. Marinari; M.T. Mora (2003). "The Big Mother of All the Dualities, I: Möller Algorithm" . Communications in Algebra . 31 (2): 783– 818. CiteSeerX 10.1.1.57.7799 . doi :10.1081/AGB-120017343 . S2CID 120556267 .
Teo Mora (March 1, 2003). Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy . Encyclopedia of Mathematics and its Application. Vol. 88. Cambridge University Press . doi :10.1017/cbo9780511542831 . ISBN 9780521811545 . S2CID 118216321 .
T. Mora (2005). Solving Polynomial Equation Systems II: Macaulay's Paradigm and Gröbner Technology . Encyclopedia of Mathematics and its Applications. Vol. 99. Cambridge University Press .
T. Mora (2015). Solving Polynomial Equation Systems III: Algebraic Solving . Encyclopedia of Mathematics and its Applications. Vol. 157. Cambridge University Press .
T Mora (2016). Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond . Encyclopedia of Mathematics and its Applications. Vol. 158. Cambridge University Press . ISBN 9781107109636 .
T. Mora (2015). "De Nugis Groebnerialium 4: Zacharias, Spears, Möller". Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '15 . pp. 283– 290. doi :10.1145/2755996.2756640 . ISBN 9781450334358 . S2CID 14654596 .
Michela Ceria; Teo Mora (2016). "Buchberger–Weispfenning theory for effective associative rings". Journal of Symbolic Computation . 83 : 112– 146. arXiv :1611.08846 . doi :10.1016/j.jsc.2016.11.008 . S2CID 10363249 .
T Mora (2016). Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond . Encyclopedia of Mathematics and its Applications. Vol. 158. Cambridge University Press . ISBN 9781107109636 .
External links
International National Academics People