Temperature-responsive polymers or thermoresponsive polymers are polymers that exhibit drastic and discontinuous changes in their physical properties with temperature.[1] The term is commonly used when the property concerned is solubility in a given solvent, but it may also be used when other properties are affected. Thermoresponsive polymers belong to the class of stimuli-responsive materials, in contrast to temperature-sensitive (for short, thermosensitive) materials, which change their properties continuously with environmental conditions.
In a stricter sense, thermoresponsive polymers display a miscibility gap in their temperature-composition diagram. Depending on whether the miscibility gap is found at high or low temperatures, either an upper critical solution temperature (UCST) or a lower critical solution temperature (LCST) exists.
Research mainly focuses on polymers that show thermoresponsivity in aqueous solution. Promising areas of application are tissue engineering,[2] liquid chromatography,[3][4]drug delivery[2][5] and bioseparation.[6] Only a few commercial applications exist, for example, cell culture plates coated with an LCST-polymer.
History
This section needs expansion. You can help by adding to it. (December 2012)
The theory of thermoresponsive polymer (similarly, microgels) begins in the 1940s with work from Flory and Huggins who both independently produced similar theoretical expectations for polymer in solution with varying temperature.
The effects of external stimuli on particular polymers were investigated in the 1960s by Heskins and Guillet.[7] They established 32°C as the lower critical solution temperature (LCST) for poly(N-isopropylacrylamide).
Thermoresponsive polymer chains in solution adopt an expanded coil conformation. At the phase separation temperature they collapse to form compact globuli. This process can be observed directly by methods of static and dynamic light scattering.[8][9] The drop in viscosity can be indirectly observed. When mechanisms which reduce surface tension are absent, the globules aggregate, subsequently causing turbidity and the formation of visible particles.
Phase diagrams of thermoresponsive polymers
The phase separation temperature (and hence, the cloud point) is dependent on polymer concentration. Therefore, temperature-composition diagrams are used to display thermoresponsive behavior over a wide range of concentrations.[10] Phases separate into a polymer-poor and a polymer-rich phase. In strictly binary mixtures the composition of the coexisting phases can be determined by drawing tie-lines. However, since polymers display a molar mass distribution this straightforward approach may be insufficient.
During the process of phase separation the polymer-rich phase can vitrify before equilibrium is reached. This depends on the glass transition temperature for each individual composition. It is convenient to add the glass transition curve to the phase diagram, although it is no real equilibrium. The intersection of the glass transition curve with the cloud point curve is called Berghmans point.[11] In the case of UCST polymers, above the Berghmans point the phases separate into two liquid phases, below this point into a liquid polymer-poor phase and a vitrified polymer-rich phase. For LCST polymers the inverse behavior is observed.
Without interactions between the compounds there would be no enthalpy of mixing and the entropy of mixing would be ideal. The ideal entropy of mixing of multiple pure compounds is always positive (the term -T∙ΔS is negative) and ΔG would be negative for all compositions, causing complete miscibility. Therefore, the fact that miscibility gaps are observed can only be explained by interaction. In the case of polymer solutions, polymer-polymer, solvent-solvent and polymer-solvent interactions have to be taken into account. A model for the phenomenological description of polymer phase diagrams was developed by Flory and Huggins (see Flory–Huggins solution theory). The resulting equation for the change of Gibbs energy consists of a term for the entropy of mixing for polymers and an interaction parameter that describes the sum of all interactions.[11]
m = number of occupied lattice sites per molecule (for polymer solutions m1 is approximately equal to the degree of polymerization and m2=1)
φ = volume fraction of the polymer and the solvent, respectively
χ = interaction parameter
A consequence of the Flory-Huggins theory is, for instance, that the UCST (if it exists) increases and shifts into the solvent-rich region when the molar mass of the polymer increases. Whether a polymer shows LCST and/or UCST behavior can be derived from the temperature-dependence of the interaction parameter (see figure). The interaction parameter not only comprises enthalpic contributions but also the non-ideal entropy of mixing, which again consists of many individual contributions (e.g., the strong hydrophobic effect in aqueous solutions). For these reasons, classical Flory-Huggins theory cannot provide much insight into the molecular origin of miscibility gaps.
Applications
Bioseparation
Thermoresponsive polymers can be functionalized with moieties that bind to specific biomolecules. The polymer-biomolecule conjugate can be precipitated from solution by a small change of temperature.[6][12] Isolation may be achieved by filtration or centrifugation.
Thermoresponsive surfaces
Tissue engineering
For some polymers it was demonstrated that thermoresponsive behavior can be transferred to surfaces. The surface is either coated with a polymer film or the polymer chains are bound covalently to the surface.
This provides a way to control the wetting properties of a surface by small temperature changes. The described behavior can be exploited in tissue engineering since the adhesion of cells is strongly dependent on the hydrophilicity/hydrophobicity.[2][13] This way, it is possible to detach cells from a cell culture dish by only small changes in temperature, without the need to additionally use enzymes (see figure). Respective commercial products are already available.
Thermoresponsive polymers can be used as the stationary phase in liquid chromatography.[3] Here, the polarity of the stationary phase can be varied by temperature changes, altering the power of separation without changing the column or solvent composition. Thermally related benefits of gas chromatography can now be applied to classes of compounds that are restricted to liquid chromatography due to their thermolability. In place of solvent gradient elution, thermoresponsive polymers allow the use of temperature gradients under purely aqueous isocratic conditions.[14] The versatility of the system is controlled not only by changing temperature, but also by adding modifying moieties that allow for a choice of enhanced hydrophobic interaction, or by introducing the prospect of electrostatic interaction.[15] These developments have already brought major improvements to the fields of hydrophobic interaction chromatography, size exclusion chromatography, ion exchange chromatography, and affinity chromatography separations, as well as pseudo-solid phase extractions ("pseudo" because of phase transitions).
Thermoresponsive gels
Covalently linked gels
Three-dimensional covalently linked polymer networks are insoluble in all solvents, they merely swell in good solvents.[16][17] Thermoresponsive polymer gels show a discontinuous change of the degree of swelling with temperature. At the volume phase transition temperature (VPTT) the degree of swelling changes drastically. Researchers try to exploit this behavior for temperature-induced drug delivery. In the swollen state, previously incorporated drugs are released easily by diffusion.[18] More sophisticated "catch and release" techniques have been elaborated in combination with lithography[19] and molecular imprinting.[20]
Physical gels
In physical gels unlike covalently linked gels the polymers chains are not covalently linked together. That means that the gel could re-dissolve in a good solvent under some conditions. Thermoresponsive physical gels, also sometimes called thermoresponsive injectable gels have been used in Tissue Engineering.[21][22][23][2][24] This involves mixing at room temperature the thermoresponsive polymer in solution with the cells and then inject the solution to the body. Due to the temperature increase (to body temperature) the polymer creates a physical gel. Within this physical gel the cells are encapsulated. Tailoring the temperature that the polymer solution gels can be challenging because this depend by many factors like the polymer composition,[25][26][27][28] architecture[25][26] as well as the molar mass.[27]
Thermoreversible materials
Some thermoreversiblegels are used in biomedicine. For instance, hydrogels made of proteins are used as scaffolds in knee replacement.[29] In baking, thermoreversible glazes such as pectin are prized for their ability to set and then reset after melting,[30] and are used in nappage and other processes to ensure a smooth final surface for a presented dish.[31][32] In manufacturing, thermoplastic elastomers can be set into a shape and then reset to their original shape through thermal reversibility, unlike one-way thermoset elastomers.[33]
Characterization of thermoresponsive polymer solutions
Cloud point
Experimentally, the phase separation can be followed by turbidimetry. There is no universal approach for determining the cloud point suitable for all systems. It is often defined as the temperature at the onset of cloudiness, the temperature at the inflection point of the transmittance curve, or the temperature at a defined transmittance (e.g., 50%).[11] The cloud point can be affected by many structural parameters of the polymer like the hydrophobic content,[25][26][27][28][34] architecture[25][26] and even the molar mass.[27][35]
Hysteresis
The cloud points upon cooling and heating of a thermoresponsive polymer solution do not coincide because the process of equilibration takes time. The temperature interval between the cloud points upon cooling and heating is called hysteresis. The cloud points are dependent on the cooling and heating rates, and hysteresis decreases with lower rates. There are indications that hysteresis is influenced by the temperature, viscosity, glass transition temperature and the ability to form additional intra- and inter-molecular hydrogen bonds in the phase separated state.[36]
Other properties
Another important property for potential applications is the extent of phase separation, represented by the difference in polymer content in the two phases after phase separation. For most applications, phase separation in pure polymer and pure solvent would be desirable although it is practically impossible. The extent of phase separation in a given temperature interval depends on the particular polymer-solvent phase diagram.
Example: From the phase diagram of polystyrene (molar mass 43,600 g/mol) in the solvent cyclohexane it follows that at a total polymer concentration of 10%, cooling from 25 to 20 °C causes phase separation into a polymer-poor phase with 1% polymer and a polymer-rich phase with 30% polymer content.[37]
Also desirable for many applications is a sharp phase transition, which is reflected by a sudden drop in transmittance. The sharpness of the phase transition is related to the extent of phase separation but additionally relies on whether all present polymer chains exhibit the same cloud point. This depends on the polymer endgroups, dispersity, or—in the case of copolymers—varying copolymer compositions.[36] As a result of phase separation, thermoresponsive polymer systems can form well-defined self-assembled nanostructures with a number of different practical application such as in drug and gene delivery, tissue engineering, etc. In order to establish the required properties for applications, a rigorous characterization of the phase separation phenomenon can be carried out by different spectroscopic and calorimetric methods, including nuclear magnetic resonance (NMR) , dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), infrared spectroscopy (IR), Raman spectroscopy, and Differential scanning calorimetry (DSC).[38]
Examples of thermoresponsive polymers
Thermoresponsivity in organic solvents
Due to the low entropy of mixing, miscibility gaps are often observed for polymer solutions.[11] Many polymers are known that show UCST or LCST behavior in organic solvents.[39] Examples for organic polymer solutions with UCST are polystyrene in cyclohexane,[37][40]polyethylene in diphenylether[41][42] or polymethylmethacrylate in acetonitrile.[43] An LCST is observed for, e.g., polypropylene in n-hexane,[44] polystyrene in butylacetate[45] or polymethylmethacrylate in 2-propanone.[46]
Thermoresponsivity in water
Polymer solutions that show thermoresponsivity in water are especially important since water as a solvent is cheap, safe and biologically relevant. Current research efforts focus on water-based applications like drug delivery systems, tissue engineering, bioseparation (see the section Applications). Numerous polymers with LCST in water are known.[11] The most studied polymer is poly(N-isopropylacrylamide).[47][48][49] Further examples are poly[2-(dimethylamino)ethyl methacrylate] (pDMAEMA)[25][26][27][28][35]hydroxypropylcellulose,[50]poly(vinylcaprolactam),[51] poly-2-isopropyl-2-oxazoline[52] and polyvinyl methyl ether.[53]
Some industrially relevant polymers show LCST as well as UCST behavior whereas the UCST is found outside the 0-to-100 °C region and can only be observed under extreme experimental conditions.[36] Examples are polyethylene oxide,[54][55][56] polyvinylmethylether[57] and polyhydroxyethylmethacrylate.[58] There are also polymers that exhibit UCST behavior between 0 and 100 °C. However, there are large differences concerning the ionic strength at which UCST behavior is detected. Some zwitterionic polymers show UCST behavior in pure water and also in salt-containing water or even at higher salt concentration.[59][60][61][62] By contrast, polyacrylic acid displays UCST behavior solely at high ionic strength.[63] Examples for polymer that show UCST behavior in pure water as well as under physiological conditions are poly(N-acryloylglycinamide),[64][65][66][67] ureido-functionalized polymers,[68] copolymers from N-vinylimidazole and 1-vinyl-2-(hydroxylmethyl)imidazole[69] or copolymers from acrylamide and acrylonitrile.[70] Polymers for which UCST relies on non-ionic interactions are very sensitive to ionic contamination. Small amounts of ionic groups may suppress phase separation in pure water.
The UCST is dependent on the molecular mass of the polymer. For the LCST this is not necessarily the case, as shown for poly(N-isopropylacrylamide).[71][72][73]
Schizophrenic behavior of UCST-LCST diblock copolymers
A more complex scenario can be found in the case of diblock copolymers that feature two orthogonally thermo-responsive blocks, i.e., an UCST and an LCST-type block. By applying a temperature stimulus, the individual polymer blocks show different phase transitions, e.g. by increasing the temperature, the UCST-type block features an insoluble-soluble transition, while the LCST-type block undergoes a soluble-insoluble transition.[74][75][76] The order of the individual phase transitions depends on the relative positions of the UCST and LCST. Thus, upon temperature change the roles of the soluble and insoluble polymer blocks are reversed and this structural inversion is typically called ‘schizophrenic’ in the literature.[77][78][79] Besides the fundamental interest in the mechanism of this behavior, such block copolymers have been proposed for application in smart emulsification, drug delivery, and rheology control.[80][81][82] Schizophrenic diblock copolymer have also been applied as thin films for potential use as sensors, smart coatings or nanoswitches, and soft robotics.[83][84][85][86][59]
^Michael Heskins; James E. Guillet (1968). "Solution Properties of Poly(N-isopropylacrylamide)". J. Macromol. Sci. Chem. 2 (8): 1441–1455. doi:10.1080/10601326808051910.
^Lee, EL.; von Recum, HA (2010). "Cell culture platform with mechanical conditioning and nondamaging cellular detachment". J Biomed Mater Res A. 93 (2): 411–8. doi:10.1002/jbm.a.32754. PMID20358641.
^Hideko Kanazawa (2007). "Thermally responsive chromatographic materials using functional polymers". J. Sep. Sci. 30 (11): 1646–1656. doi:10.1002/jssc.200700093. PMID17623446.
^Eri Ayano; Hideko Kanazawa (2006). "Aqueous chromatography system using temperature-responsive polymer-modified stationary phases". J. Sep. Sci. 29 (6): 738–749. doi:10.1002/jssc.200500485. PMID16830486.
^Patrickios, Costas S.; Georgiou, Theoni K. (March 1, 2003). "Covalent amphiphilic polymer networks". Current Opinion in Colloid & Interface Science. 8 (1): 76–85. doi:10.1016/S1359-0294(03)00005-0.
^Rikkou-Kalourkoti, M.; Patrickios, C. S.; Georgiou, T. K. (January 1, 2012). Möller, Krzysztof MatyjaszewskiMartin (ed.). 6.08 - Model Networks and Functional Conetworks. Amsterdam: Elsevier. pp. 293–308. doi:10.1016/b978-0-444-53349-4.00166-7. ISBN978-0-08-087862-1.
^Alexandro Castellanos; Samuel J. DuPont; August J. Heim II; Garrett Matthews; Peter G. Stroot; Wilfrido Moreno; Ryan G. Toomey (2007). "Size-Exclusion "capture and release" separations using surface-patterned poly(N-isopropylacrylamide) hydrogels". Langmuir. 23 (11): 6391–6395. doi:10.1021/la700338p. PMID17441745.
^Roongnapa Suedee; Vatcharee Seechamnanturakit; Bhutorn Canyuk; Chitchamai Ovatlarnporn; Gary P. Martin (2006). "Temperature sensitive dopamine-imprinted (N,N-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine". J. Chromatogr. A. 1114 (2): 239–249. doi:10.1016/j.chroma.2006.02.033. PMID16530207.
^Kretlow, James D.; Klouda, Leda; Mikos, Antonios G. (May 30, 2007). "Injectable matrices and scaffolds for drug delivery in tissue engineering". Advanced Drug Delivery Reviews. 59 (4–5): 263–273. doi:10.1016/j.addr.2007.03.013. PMID17507111.
^Klouda, Leda (November 1, 2015). "Thermoresponsive hydrogels in biomedical applications: A seven-year update". European Journal of Pharmaceutics and Biopharmaceutics. Polymers for Drug Delivery Systems. 97, Part B (Pt B): 338–349. doi:10.1016/j.ejpb.2015.05.017. PMID26614556.
^ abcdeWard, Mark A.; Georgiou, Theoni K. (February 15, 2010). "Thermoresponsive terpolymers based on methacrylate monomers: Effect of architecture and composition". Journal of Polymer Science Part A: Polymer Chemistry. 48 (4): 775–783. Bibcode:2010JPoSA..48..775W. doi:10.1002/pola.23825. ISSN1099-0518.
^ abcdeWard, Mark A.; Georgiou, Theoni K. (2012). "Thermoresponsive triblock copolymers based on methacrylate monomers: effect of molecular weight and composition". Soft Matter. 8 (9): 2737. Bibcode:2012SMat....8.2737W. doi:10.1039/c2sm06743a.
^ abcWard, Mark A.; Georgiou, Theoni K. (July 1, 2013). "Thermoresponsive gels based on ABA triblock copolymers: Does the asymmetry matter?". Journal of Polymer Science Part A: Polymer Chemistry. 51 (13): 2850–2859. Bibcode:2013JPoSA..51.2850W. doi:10.1002/pola.26674. ISSN1099-0518.
^US application 2007202225, Chevalier, Olivier, "Cold gelling pastry glaze based on pectin", published 2007-08-30, assigned to Puratos NV, since abandoned.
^Velychkivska N, Janisova L, Hill JP, Labuta J (September 2021). "The Battery of Analytical Techniques Necessary for the Effective Characterization of Solutions of Temperature-Sensitive Polymers". Reviews and Advances in Chemistry. 11 (1–2): 100–111. doi:10.1134/S2079978021010076. S2CID237539482.
^Vasantha, Vivek Arjunan; Jana, Satyasankar; Parthiban, Anbanandam; Vancso, Julius G. (2014). "Water swelling, brine soluble imidazole based zwitterionic polymers – synthesis and study of reversible UCST behaviour and gel–sol transitions". Chemical Communications. 50 (1): 46–8. doi:10.1039/C3CC44407D. PMID23925439.
Temple OwlsFounded1927 (1927)Defunct2014UniversityTemple UniversityConferenceThe AmericanHome stadiumSkip Wilson Field (Capacity: 1,000)NicknameOwlsColorsCherry and white[1] College World Series appearances1972, 1977NCAA regional champions1977NCAA Tournament appearances1959, 1963, 1968, 1972, 1973, 1975, 1976, 1977, 1978, 1981, 1983, 1984, 2001 The Temple Owls baseball team was a varsity intercollegiate athletic team of Temple University in Philadelphia...
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Fetisisme pakaian dalam – berita · surat kabar · buku · cendekiawan · JSTOR Salah satu jenis Fetisisme pakaian dalam adalah Fetisisme terhadap stoking. Fetisisme pakaian dalam adalah fetisisme seksual ya...
Sumber referensi dari artikel ini belum dipastikan dan mungkin isinya tidak benar. Mohon periksa, kembangkan artikel ini, dan tambahkan sumber yang benar pada bagian yang diperlukan. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Berikut ini adalah daftar antropolog Indonesia. Anda diundang untuk mengembangkan daftar ini lebih lanjut. A Abdul Latif Bustami,[1] dari Universitas Negeri Malang Abriveno Y.L. Pitoy, Indonesian Resource Centre for Indigenous Knowledge (...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2023. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber...
Christian saint SaintAngela MericiSt. Angela Merici Teaching by Pietro Calzavacca (mid-19th century)Virgin and foundressBorn21 March 1474Desenzano del Garda, Province of Brescia, Republic of VeniceDied27 January 1540(1540-01-27) (aged 65)Brescia, Republic of VeniceBeatified30 April 1768, Rome, Papal States, by Pope Clement XIIICanonized24 May 1807, Rome, Papal States, by Pope Pius VIIMajor shrineSanctuary of St. Angela Merici, Brescia, ItalyFeast27 January; 31 May (1861–1955); 1 June (...
Abby the Spoon LadyAbby the Spoon Lady performing in Asheville, North Carolina (2014)Background informationBirth nameAbby RoachBorn (1981-10-29) 29 October 1981 (age 42)Wichita, Kansas, United StatesOriginWichita, Kansas, United StatesGenresAmerican folk, American rootsOccupation(s) musician free speech activist percussionist storyteller radio personality Instrument(s)Spoons, musical sawYears active2002 (2002)–presentWebsitespoonlady.comMusical artist Abby Roach (born October 29, ...
Questa voce o sezione sull'argomento registi italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: Per la maggioranza dei festival cui ha partecipato non è chiara la rilevanza Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Stefano Incerti e Alessio Boni sul set di Complici del silenzio Stefano Incerti (Napoli, 25 luglio 1965) è un regis...
Government ministry of the Republic of Turkey Ministry of Culture and TourismKültür ve Turizm BakanlığıRepublic of Turkey Ministry of Culture and Tourism building, AnkaraAgency overviewFormed2003JurisdictionGovernment of TurkeyHeadquartersAnkaraAnnual budget38.964.106.000 TL (2024)Minister responsibleMehmet Nuri ErsoyDeputy Ministers responsibleBatuhan MumcuGökhan YazgıNadir AlpaslanSerdar ÇamWebsitektb.gov.tr The Ministry of Culture and Tourism (Turkish: Kültür ve Turizm Bakanlığ...
غوس بويت (بالإسبانية: Gus Poyet) معلومات شخصية الميلاد 15 نوفمبر 1967 (العمر 56 سنة)مونتفيدو الطول 1.88 م (6 قدم 2 بوصة) مركز اللعب وسط الجنسية الأوروغواي أبناء دييغو بويت معلومات النادي النادي الحالي اليونان (مدرب) مسيرة الشباب سنوات فريق ريفر بليت المسيرة ال...
Questa voce o sezione sull'argomento autorità unitarie dell'Inghilterra non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Distretto del Mid SussexDistrettoDistretto del Mid Sussex – Veduta LocalizzazioneStato Regno Unito Inghilterra RegioneSud Est Contea West Sussex AmministrazioneCapoluogoHaywards Heath EsecutivoConserva...
هذه المقالة مكتوبة من وجهة نظر مُعجَب أو مُشجِّع، وهي لا تعرِض وجهة نظر محايدة. فضلاً، أَزِل ألفاظ الإعجاب والتباهي من متنها، لتتوافق مع دليل الأسلوب في ويكيبيديا. (نقاش) تحتاج هذه المقالة إلى الاستشهاد بمصادر إضافية لتحسين وثوقيتها. فضلاً ساهم في تطوير هذه المقالة بإضافة �...
Law school in San Diego, California, U.S. Cal Western redirects here. For the other university descended from Cal Western University, see Alliant International University. California Western School of LawEstablished1924[1]School typePrivate law schoolDeanSean Megan Scott[2]LocationSan Diego, California, United States32°43′21″N 117°9′42″W / 32.72250°N 117.16167°W / 32.72250; -117.16167Enrollment827[3]Faculty71 (25 tenured)[4]U...
Madden Most Valuable Protectors AwardAwarded forAwarded annually to the best offensive line.CountryUnited StatesPresented byNational Football LeagueFirst awarded2009Currently held bySan Francisco 49ersWebsitewww.nfl.com/voting/protectors/2011/YEAR/0 The Madden Most Valuable Protectors Award was a trophy awarded annually to the best offensive line of the National Football League.[1] The trophy, sponsored by Prilosec OTC, is named in honor of former NFL coach and commentator, John Madde...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (سبتمبر 2022) برنامج السعودية لرواد الفضاءمعلومات عامةالاسم الأصلي برنامج رواد الفضاءالبلد السعوديةتاريخ التأسيس 22 سبتمبر 2022المؤسس الهيئة السعودية للفضاءتعديل - ت�...
Railway station in Arao, Kumamoto Prefecture, Japan Minami-Arao Station南荒尾駅Minami Station in 2007General informationLocationJapanCoordinates32°57′57″N 130°25′58″E / 32.9658°N 130.4328°E / 32.9658; 130.4328Operated by JR KyushuLine(s)■ Kagoshima Main Line,Distance154.8 km from MojikōPlatforms2 side platformsTracks2ConstructionStructure typeAt gradeParkingAvailableAccessibleNo - platforms linked by footbridgeOther informationStatusUnstaffedWebsiteO...
Electricity from sunlight in one U.S. state US solar potential Solar power in West Virginia on rooftops can provide 23% of all electricity used in West Virginia from 6,300 MW of solar panels,[1] but West Virginia will be the last state in the United States to reach grid parity - the point where solar panels are cheaper than grid electricity - without incentives, due to the low cost of electricity - about $0.062/kWh. The point where grid parity is reached is a product of the average in...
State recreation area in Oregon, USA Goose Lake State Recreation AreaMemorial plaque at Goose Lake State ParkShow map of OregonShow map of the United StatesTypeRecreation AreaLocationLake County, OregonNearest cityLakeviewCoordinates41°59′40″N 120°19′24″W / 41.9943316°N 120.3232891°W / 41.9943316; -120.3232891[1]Operated byOregon Parks and Recreation DepartmentOpenApril to October (camping) Goose Lake State Recreation Area is located on St...
Untuk anak usahanya yang memproduksi peralatan konstruksi, lihat Kobelco Construction Machinery America. Artikel ini memerlukan pemutakhiran informasi. Harap perbarui artikel dengan menambahkan informasi terbaru yang tersedia.Kobe Steel, Ltd.Kantor pusat di TokyoNama asli株式会社神戸製鋼所JenisPublik KKKode emitenTYO: 5406OSE: 5406Templat:NAGKomponen Nikkei 225IndustriBajaDidirikanKobe, Jepang(1 September 1905; 118 tahun lalu (1905-09-01))Kantorpusat2-4, Wakinohama-Kaigandori 2-...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2022) الشعار تشير اللاسلطوية في أفريقيا (بالإنجليزية: Anarchism in Africa) إلى كل من التنظيم السياسي اللاسلطوي المزعوم لبعض المجتمعات الأفريقية التقليدية والحركات اللاسل�...