The presence of a tapetum lucidum enables animals to see in dimmer light than would otherwise be possible. The tapetum lucidum, which is iridescent, reflects light roughly on the interference principles of thin-film optics, as seen in other iridescent tissues. However, the tapetum lucidum cells are leucophores, not iridophores.[dubious – discuss]
The tapetum functions as a retroreflector which reflects light directly back along the light path. This serves to match the original and reflected light, thus maintaining the sharpness and contrast of the image on the retina. The tapetum lucidum reflects with constructive interference,[4] thus increasing the quantity of light passing through the retina. In the cat, the tapetum lucidum increases the sensitivity of vision by 44%, allowing the cat to see light that is imperceptible to human eyes.[5] When a tapetum lucidum is present, its location on the eyeball varies with the placement of the eyeball in the head.[6]
Apart from its eyeshine, the tapetum lucidum itself has a color. It is often described as iridescent. In tigers, it is greenish.[7] In ruminants, it may be golden green with a blue periphery,[8] or whitish or pale blue with a lavender periphery. In dogs, it may be whitish with a blue periphery.[8] The color in reindeer changes seasonally, allowing the animals to better avoid predators in low-light winter at the price of blurrier vision.[9]
Classification
A classification of anatomical variants of tapeta lucida[3] defines four types:
Choroidal tapetum cellulosum, as seen in carnivores, rodents, and cetacea. The tapetum consists of layers of cells containing organized, highly refractive crystals. These crystals are diverse in shape and makeup: dogs and ferrets use zinc, cats use riboflavin and zinc, and lemurs use only riboflavin.[3]: 17
Choroidal tapetum fibrosum, as seen in cows, sheep, goats, and horses. The tapetum is an array of extracellular fibers, most commonly collagen.[3]: 17
The functional differences between these four structural classes of tapeta lucida are not known.[3]
Animal Variation
Primates
Humans like haplorhine primates lack a tapetum lucidum as they are diurnal.[3]Strepsirrhine primates are mostly nocturnal and, with the exception of several diurnal Eulemur species, have a tapetum lucidum of riboflavin crystals.[12]
Dogs
In canids, the tapetum lucidum is found in the dorsal half of the eye's fundus. It consists of 9-20 layers of specialized rectangular cells between the choroid and retinal pigment epithelium, thinning towards the periphery. The cells contain zinc-rich rodlets arranged in parallel. The structure appears yellow-green in adults, though blue in puppies until four months of age. Zinc concentration varies among species, with red foxes showing highest levels, followed by Arctic foxes, then domestic dogs. A hereditary zinc-deficiency condition in some beagles results in degenerated tapetal cells with disrupted rodlet arrangement.[13]
Cats
The tapetum lucidum in cats is renowned for its brilliance, even inspiring ancient Egyptians to believe it reflected the sun at night. This reflective layer is composed of 15-20 layers of cells arranged in a central pattern. This structure, denser than that of dogs, results in high reflectance, nearly 130 times that of humans. Its color is heterogeneous, varying with age and species due to factors like rodlet spacing, refractive index, and light interactions. Young cats exhibit a blue appearance, which shifts to yellow with age, with adult coloration ranging from light orange to green. While enhancing night vision, increased light scatter within the tapetum slightly compromises visual acuity.[14]
Most species of spider also have a tapetum, which is located only in their smaller, lateral eyes; the larger central eyes have no such structure. This consists of reflective crystalline deposits and is thought to have a similar function to the structure of the same name in vertebrates. Four general patterns can be distinguished in spiders:[17]
Animals without tapetum lucidum include haplorhine primates, squirrels, some birds, red kangaroo, and pigs.[8]
Eyeshine
Eyeshine is a visible effect of the tapetum lucidum. When light shines into the eye of an animal having a tapetum lucidum, the pupil appears to glow. Eyeshine can be seen in many animals, in nature, and in flashphotographs. In low light, a hand-held flashlight is sufficient to produce eyeshine that is visible to humans (despite their inferior night vision). Eyeshine occurs in a wide variety of colors including white, blue, green, yellow, pink, and red. However, since eyeshine is a type of iridescence, the color varies with the angle at which it is seen and the minerals which make up the reflective tapetum lucidum crystals. Individuals with heterochromia may display red eyeshine in the blue eye and other-colored eyeshine in the other eye. These include odd-eyed cats and bi-eyed dogs.
Although human eyes lack a tapetum lucidum, they still exhibit a weak reflection from the choroid, as can be seen in photography with the red-eye effect and with near-infrared eyeshine.[18][19] Another effect in humans and other animals that may resemble eyeshine is leukocoria, which is a white shine indicative of abnormalities such as cataracts and cancers.
Usage
Humans can scan for eyeshine to detect and identify the species of animals in the dark and deploy search dogs and search horses at night. The color corresponds approximately to the type of tapetum lucidum, with some variation between species.[This paragraph needs citation(s)]
It has been speculated that some flashlight fish may use eyeshine both to detect and to communicate with other flashlight fish.[20] American scientist Nathan H. Lents has proposed that the tapetum lucidum evolved in vertebrates, but not in cephalopods, which have a very similar eye because of the backwards-facing nature of vertebrate photoreceptors. The tapetum boosts photosensitivity under conditions of low illumination, thus compensating for the suboptimal design of the vertebrate retina.[21]
In photography
Traditionally, it has been difficult to take retinal images of animals with a tapetum lucidum because ophthalmoscopy devices designed for humans rely on a high level of on-axis illumination.[22] This kind of illumination causes backscatter when it interacts with the tapetum. New devices with variable illumination can make this possible, however.
Pathology
In dogs, certain drugs are known to disturb the precise organization of the crystals of the tapetum lucidum, thus compromising the dog's ability to see in low light. These drugs include ethambutol, macrolide antibiotics, dithizone, antimalarial medications, some receptor H2-antagonists, and cardiovascular agents. The disturbance "is attributed to the chelating action which removes zinc from the tapetal cells."[23]
^The one exception to this generalization is the neotropical night monkey genus Aotus; they are sometimes described as having a tapetum lucidum of collagen fibrils, but lack the reflective riboflavin crystals present in the eyes of nocturnal strepsirrhine primates.[3]
^ abcdefgOllivier FJ, Samuelson DA, Brooks DE, Lewis PA, Kallberg ME, Komáromy AM (2004). "Comparative morphology of the tapetum lucidum (among selected species)". Veterinary Ophthalmology. 7 (1): 11–22. doi:10.1111/j.1463-5224.2004.00318.x. PMID14738502.
^Fayrer, Sir Joseph (1889) The deadly wild beasts of India, pp. 218–240 in James Knowls (ed) The Nineteenth Century, Henry S. King & Co., v. 26; p. 219. via Google Books
^ abcOrlando Charnock Bradley, 1896, Outlines of Veterinary Anatomy. Part I. The Anterior and Posterior Limbs, Baillière, Tindall & Cox, p. 224. Free full text on Google Books
^Mowat, Freya M.; Peichl, Leo (2022). "Ophthalmology of Canidae: Foxes, Wolves, and Relatives". Wild and Exotic Animal Ophthalmology. Springer International Publishing. pp. 181–214. doi:10.1007/978-3-030-81273-7_11. ISBN978-3-030-81272-0.
^Corsi, Francesca; Guandalini, Adolfo; Rossi, João Luiz; Ben-Shlomo, Gil; Montiani-Ferreira, Fabiano; Moore, Bret A. (2022). "Ophthalmology of Felidae: Cats". Wild and Exotic Animal Ophthalmology. Springer International Publishing. pp. 155–180. doi:10.1007/978-3-030-81273-7_10. ISBN978-3-030-81272-0.
^Gill, Frank, B (2007) "Ornithology", Freeman, New York