Suspension (topology)

Suspension of a circle. The original space is in blue, and the collapsed end points are in green.

In topology, a branch of mathematics, the suspension of a topological space X is intuitively obtained by stretching X into a cylinder and then collapsing both end faces to points. One views X as "suspended" between these end points. The suspension of X is denoted by SX[1] or susp(X).[2]: 76 

There is a variation of the suspension for pointed space, which is called the reduced suspension and denoted by ΣX. The "usual" suspension SX is sometimes called the unreduced suspension, unbased suspension, or free suspension of X, to distinguish it from ΣX.

Free suspension

The (free) suspension of a topological space can be defined in several ways.

1. is the quotient space In other words, it can be constructed as follows:

  • Construct the cylinder .
  • Consider the entire set as a single point ("glue" all its points together).
  • Consider the entire set as a single point ("glue" all its points together).

2. Another way to write this is:

Where are two points, and for each i in {0,1}, is the projection to the point (a function that maps everything to ). That means, the suspension is the result of constructing the cylinder , and then attaching it by its faces, and , to the points along the projections .

3. One can view as two cones on X, glued together at their base.

4. can also be defined as the join where is a discrete space with two points.[2]: 76 

5. In Homotopy type theory, be defined as a higher inductive type generated by

S:

N:

[3]

Properties

In rough terms, S increases the dimension of a space by one: for example, it takes an n-sphere to an (n + 1)-sphere for n ≥ 0.

Given a continuous map there is a continuous map defined by where square brackets denote equivalence classes. This makes into a functor from the category of topological spaces to itself.

Reduced suspension

If X is a pointed space with basepoint x0, there is a variation of the suspension which is sometimes more useful. The reduced suspension or based suspension ΣX of X is the quotient space:

.

This is the equivalent to taking SX and collapsing the line (x0 × I) joining the two ends to a single point. The basepoint of the pointed space ΣX is taken to be the equivalence class of (x0, 0).

One can show that the reduced suspension of X is homeomorphic to the smash product of X with the unit circle S1.

For well-behaved spaces, such as CW complexes, the reduced suspension of X is homotopy equivalent to the unbased suspension.

Adjunction of reduced suspension and loop space functors

Σ gives rise to a functor from the category of pointed spaces to itself. An important property of this functor is that it is left adjoint to the functor taking a pointed space to its loop space . In other words, we have a natural isomorphism

where and are pointed spaces and stands for continuous maps that preserve basepoints. This adjunction can be understood geometrically, as follows: arises out of if a pointed circle is attached to every non-basepoint of , and the basepoints of all these circles are identified and glued to the basepoint of . Now, to specify a pointed map from to , we need to give pointed maps from each of these pointed circles to . This is to say we need to associate to each element of a loop in (an element of the loop space ), and the trivial loop should be associated to the basepoint of : this is a pointed map from to . (The continuity of all involved maps needs to be checked.)

The adjunction is thus akin to currying, taking maps on cartesian products to their curried form, and is an example of Eckmann–Hilton duality.

This adjunction is a special case of the adjunction explained in the article on smash products.

Applications

The reduced suspension can be used to construct a homomorphism of homotopy groups, to which the Freudenthal suspension theorem applies. In homotopy theory, the phenomena which are preserved under suspension, in a suitable sense, make up stable homotopy theory.

Examples

Some examples of suspensions are:[4]: 77, Exercise.1 

  • The suspension of an n-ball is homeomorphic to the (n+1)-ball.

Desuspension

Desuspension is an operation partially inverse to suspension.[5]

See also

References

  1. ^ Allen Hatcher, Algebraic topology. Cambridge University Presses, Cambridge, 2002. xii+544 pp. ISBN 0-521-79160-X and ISBN 0-521-79540-0
  2. ^ a b Matoušek, Jiří (2007). Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.). Berlin-Heidelberg: Springer-Verlag. ISBN 978-3-540-00362-5. Written in cooperation with Anders Björner and Günter M. Ziegler
  3. ^ "suspension type in nLab". ncatlab.org. Retrieved 2024-08-20.
  4. ^ Matoušek, Jiří (2007). Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.). Berlin-Heidelberg: Springer-Verlag. ISBN 978-3-540-00362-5. Written in cooperation with Anders Björner and Günter M. Ziegler , Section 4.3
  5. ^ Wolcott, Luke. "Imagining Negative-Dimensional Space" (PDF). forthelukeofmath.com. Retrieved 2015-06-23.

Read other articles:

Humata repens Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Polypodiophyta Kelas: Polypodiopsida Ordo: Polypodiales Famili: Davalliaceae Genus: Humata Spesies: Humata repensL. f. J. Small ex Diels, 1899 Humata repens (sinonim: Adiantum repens) adalah tumbuhan paku/pakis epifit (fern) dan termasuk ke dalam keluarga Davalliaceae. Tanaman ini epilitik pada variasi bebatuan, terkadang terestrial, di tempat yang sangat basah sampai kering di area permuk...

 

Pub in Moorgate, London The Globe, Moorgate, EC2 The Globe is a pub at 83 Moorgate, London. It is a Grade II listed building, built in the early 19th century.[1] References ^ Historic England. The Globe Public House (1252057). National Heritage List for England. Retrieved 25 November 2016. External links Official website Media related to The Globe, Moorgate at Wikimedia Commons 51°31′04″N 0°05′20″W / 51.517669°N 0.0888048°W / 51.517669; -0.0888048 v...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Didi PriyadiAsalIndonesiaGenrepop punk/powerpop, pop rock, metal progresif, metal avant-garde, metal gothik, death metal, grindcorePekerjaanMusisi, penulis lagu, produserInstrumenGitar, vokal, drum, drum mesin, keyboard, bassTahun aktif1995–sekarangA...

العلاقات الإسرائيلية الغرينادية إسرائيل غرينادا   إسرائيل   غرينادا تعديل مصدري - تعديل   العلاقات الإسرائيلية الغرينادية هي العلاقات الثنائية التي تجمع بين إسرائيل وغرينادا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين:...

 

Study of signs and sign processes Semiotics   General concepts Sign relation relational complex Code Confabulation Connotation / Denotation Encoding / Decoding Lexical Modality Representation Salience Semiosis Semiosphere Semiotic theory of Peirce Umwelt Value Fields Biosemiotics Cognitive semiotics Computational semiotics Literary semiotics Semiotics of culture Social semiotics Methods Commutation test Paradigmatic analysis Syntagmatic analysis Semioticians Mikhail Bak...

 

Gavia immer Pour les articles homonymes, voir Huard. Gavia immer Plongeon huardClassification COI Règne Animalia Embranchement Chordata Sous-embr. Vertebrata Classe Aves Ordre Gaviiformes Famille Gaviidae Genre Gavia EspèceGavia immer(Brunnich, 1764) Statut de conservation UICN LC  : Préoccupation mineure Répartition géographique Répartition de Gavia Immer Le Plongeon huard (Gavia immer), aussi appelé le Plongeon imbrin en Europe, le Huard à collier au Canada ou le Richepaum...

County in New York, United States Not to be confused with Tompkins, New York. County in New YorkTompkins CountyCounty Images, from top down, left to right: Ithaca Falls, Johnson Museum of Art, Allan H. Treman State Marine Park, Stewart Park, Ithaca Commons, and Cornell University FlagSealLocation within the U.S. state of New YorkNew York's location within the U.S.Coordinates: 42°27′N 76°28′W / 42.45°N 76.47°W / 42.45; -76.47Country United StatesState ...

 

Pour les articles homonymes, voir Theresienstadt (homonymie). Ghetto et camp de concentration de Theresienstadt Entrée du ghetto-camp de concentration de Theresienstadt. Présentation Type hybride : ghetto et camp de concentration nazi Gestion Utilisation originelle Forteresse et ville de garnison Date de création 24 novembre 1941 Créé par Schutzstaffel (SS) Géré par Troisième Reich Dirigé par Siegfried Seidl ; Anton Burger ; Karl Rahm Date de fermeture 8 mai 1945 Ferm...

 

Cet article est une ébauche concernant la politique. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ministre-président de Hesse Drapeau de Hesse. Titulaire actuelBoris Rhein (CDU)depuis le 31 mai 2022 Création 1er décembre 1946 Mandant Landtag Durée du mandat 5 ans Premier titulaire Karl Geiler (Ind.) Site internet staatskanzlei.hessen.de modifier  Le ministre-président de Hesse (en allemand...

Rakvere di Estonia Rakvere ialah sebuah kota di utara Estonia, terletak 20 km di selatan Teluk Finlandia, berpenduduk sekitar 17.000 jiwa. Dilalui oleh E20, yang membentang dari Tallinn (berjarak sekitar 100 km) dan Narva (berjarak sekitar 114 km), kota ini terletak beberapa kilometer dari Lahemaa Rahvuspark, taman nasional yang penting di Estonia. Rakvere terkenal akan patung auroch dari perunggu yang berukuran besar, dibuat oleh pemahat Tauno Kangro, didirikan untuk mempering...

 

Untuk kegunaan lain, lihat Labu.Labu-labu yang disusun pada rak di laboratorium. Labu adalah jenis wadah yang termasuk dalam kategori peralatan kaca laboratorium.[1] Labu terdiri dari berbagai bentuk dan ukuran, tetapi yang menjadi tolok pembeda dengan peralatan kaca lainnya adalah ukuran badannya yang lebih besar daripada lehernya, mirip seperti botol. Ukuran badan labu ini ditentukan oleh volume zat yang dapat dimasukkan, biasanya dalam satuan metrik seperti mililiter (mL atau ml) a...

 

Questa voce o sezione sull'argomento trasporti a fune non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Funivia del RenonRittner SeilbahnLa funivia dopo i lavori del 2007-2009LocalizzazioneStato Italia LocalitàBolzano, Soprabolzano (Renon) Dati tecniciTipoCabinovia trifune Stato attualeIn uso Apertura1966 Chiusura2007 Riapertura2009 GestoreSTA - Stru...

Department of France in Occitanie Department in Occitanie, FranceHaute-Garonne Nauta Garona (Occitan)DepartmentPrefecture building in Toulouse, with the city's cathedral in the background FlagCoat of armsLocation of Haute-Garonne in FranceCoordinates: 43°25′N 1°30′E / 43.417°N 1.500°E / 43.417; 1.500CountryFranceRegionOccitaniePrefectureToulouseSubprefecturesSaint-GaudensMuretGovernment • President of the Departmental CouncilGeorges Méric[...

 

For the person, see Preston Washington. Unincorporated community in Washington, United StatesPreston, WashingtonUnincorporated communityPrestonLocation in the United StatesShow map of the United StatesPrestonLocation in WashingtonShow map of Washington (state)Coordinates: 47°31′26″N 121°55′33″W / 47.52389°N 121.92583°W / 47.52389; -121.92583CountryUnited StatesStateWashingtonCountyKingElevation430 ft (130 m)Population (2000) • Tot...

 

Ethnic group in Georgia Ethnic group Greeks in GeorgiaPontic Greeks in Batumi in the early 20th centuryTotal population15,166[1] (2002, census) The Greeks in Georgia (Georgian: ბერძნები საქართველოში Berdznebi Sakartveloshi; Greek: Έλληνες στην Γεωργία, romanized: Éllines stin Georgía), which in academic circles is often considered part of the broader, historic community of Pontic Greeks or—more specifically in this...

Calvinist profession of faith Scots Confession AuthorJohn KnoxLanguageEnglishGenreConfessionPublication date1560Publication placeScotlandTextScots Confession at Wikisource Reformed Christianity portal The Scots Confession (also called the Scots Confession of 1560) is a Confession of Faith written in 1560 by six leaders of the Protestant Reformation in Scotland. The text of the Confession was the first subordinate standard for the Protestant church in Scotland. Along with the Book of Disciplin...

 

Questa voce o sezione sull'argomento medici austriaci non cita le fonti necessarie o quelle presenti sono insufficienti. Commento: ricerca originale: quasi ogni frase di questa voce è una parafrasi o testo copiato e incollato qui da blog e siti POV dedicati a Reich; psicologia, pseudoscienza, alieni, promozione di terapie per bambini della figlia Eva e il concetto di Forza cosmica, si mischiano tutt'insieme in un calderone dal quale sembra impossibile riuscire a trovare qualcosa di vag...

 

Public high school operated by Miami-Dade County Public Schools. Hialeah-Miami-Lakes Senior High SchoolAddress7977 West 12th AvenueHialeah, Florida 33014United StatesCoordinates25°53′42″N 80°18′28″W / 25.894983°N 80.307901°W / 25.894983; -80.307901InformationTypePublic high schoolMottoLatin: Labor Omnia Vincet(Work Conquers All)EstablishedSeptember 1971School districtMiami-Dade County Public SchoolsPrincipalJuan RamirezStaff131Faculty95.0 FTEsGrades9–12Ge...

Location of the Lake and Peninsula Borough in Alaska This is a list of the National Register of Historic Places listings in Lake and Peninsula Borough, Alaska, United States. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Lake and Peninsula Borough, Alaska, United States. The locations of National Register properties and districts for which the latitude and longitude coordinates are included below, may be seen in an onlin...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Hyundai Department Store Group – berita · surat kabar · buku · cendekiawan · JSTOR Logo Hyundai Department Store Hyundai Department Store Group (Hangul: 현대백화점그룹) mengoperasikan jaringan tok...