Sum of perpetuities method

The sum of perpetuities method (SPM) [1] is a way of valuing a business assuming that investors discount the future earnings of a firm regardless of whether earnings are paid as dividends or retained. SPM is an alternative to the Gordon growth model (GGM) [2] and can be applied to business or stock valuation if the business is assumed to have constant earnings and/or dividend growth. The variables are:

  • is the value of the stock or business
  • is a company's earnings
  • is the company's constant growth rate
  • is the company's risk adjusted discount rate
  • is the company's dividend payment

Comparison with other models

SPM and the Walter model

SPM is a generalized version of the Walter model.[3] The primary difference between SPM and the Walter model is the substitution of earnings and growth in the equation. Consequently, any variable which may influence a company's constant growth rate such as inflation, external financing, and changing industry dynamics can be considered using SPM in addition to growth caused by the reinvestment of retained earnings internally. Because is substituted in the equation, SPM is also directly comparable to other constant growth models.

SPM and the Gordon growth model

In a special case when a company's return on equity is equal to its risk adjusted discount rate, SPM is equivalent to the Gordon growth model (GGM). However, because GGM only considers the present value of dividend payments, GGM cannot be used to value a business which does not pay dividends. Also, when a firm's return on equity is not equal to the discount rate, GGM becomes highly sensitive to input value changes. Alternatively, SPM values dividends and retained earnings separately, taking into consideration the present value of the future income generated by retained earnings, and then summing this result with the present value of expected dividends held constant in perpetuity. Consequently, SPM can be used to value a growing company regardless of dividend policy. SPM is also much less sensitive to input value changes when a company's return on equity is different from the discount rate. An empirical test [1] shows that SPM is substantially more accurate in estimating observed stock market prices than the Gordon Growth Model.

SPM and the PEG ratio

The PEG ratio[4] is a special case in the SPM equation. If a company does not pay dividends, and its risk adjusted discount rate is equal to 10%, SPM reduces to the PEG ratio:


SPM can be used to help explain the PEG ratio as it provides a derivation and theoretical framework for the PEG.

Derivation of SPM

SPM is derived from the compound interest formula via the present value of a perpetuity equation. The derivation requires the additional variables and , where is a company's retained earnings, and is a company's rate of return on equity. The following relationships are used in the derivation:

I:        
II:        [5]

Derivation

Given by relationship II, a company with perpetual life which pays all of its earnings out as dividends has a growth rate of zero. It can therefore be valued using the present value of a perpetuity equation:


However a company may elect to retain a portion of its earnings to produce incremental earnings and/or dividend growth. If the value of both dividends and retained earnings are considered, and the return on equity is equal to the firm's discount rate, the company could be valued by the same function (refer to relationship I):



Yet retained earnings are different from dividends paid, because dividend payments represent a cash inflow to a company's owners (shareholders) while retained earnings which are reinvested to produce growth are effectively an invested cash outflow. Therefore, when the rate of return on equity is not equal to the discount rate, the present value of the future income generated by the retained earnings must be considered rather than the amount of earnings retained today.



Where is the present value of the future income generated by the assets purchased using . The income generated by depends on the firm's rate of return on equity and therefore is a function of where , is equal to the income produced by the assets purchased using . Assuming perpetual life and a constant rate of return on equity, can also be determined using the present value of a perpetuity equation:


Substituting for in the equation above produces the Walter model:


And given by relationship II, is equal to . Substituting the term, into the above equation produces the SPM constant growth valuation model:

Limitations of SPM

The SPM equation requires that all variables be held constant over time which may be unreasonable in many cases. These include the assumption of constant earnings and/or dividend growth, an unchanging dividend policy, and a constant risk profile for the firm. Outside financing may not be considered unless the financing is perpetually recurring as capital structure must also be held constant.

References

  1. ^ a b Brown, Christian; Abraham, Fred (October 2012). "Sum of Perpetuities Method for Valuing Stock Prices". Journal of Economics. 38 (1): 59–72. Retrieved 20 October 2012.
  2. ^ Gordon, Myron J. (1959). "Dividends, Earnings and Stock Prices". Review of Economics and Statistics. 41 (2). The MIT Press: 99–105. doi:10.2307/1927792. JSTOR 1927792.
  3. ^ Walter, James (March 1956). "Dividend Policies and Common Stock Prices". Journal of Finance. 11 (1): 29–41. doi:10.1111/j.1540-6261.1956.tb00684.x. JSTOR 2976527.
  4. ^ Lynch, Peter (1989). One Up on Wall Street. New York, NY: Simon and Schuster. pp. 199. ISBN 9780318414744.
  5. ^ Murphy, Joseph E Jr. (May–June 1967). "Return on Equity Capital, Dividend Payout and Growth of Earnings per Share". Financial Analysts Journal. 23 (1): 91–93. doi:10.2469/faj.v23.n3.91.

Read other articles:

Boris PasternakLahir(1890-02-10)10 Februari 1890Moscow, Kekaisaran RusiaMeninggal30 Mei 1960(1960-05-30) (umur 70)Peredelkino, Uni SovietPekerjaanpenulis puisi, pengarangKarya terkenalMy Sister Life, The Second Birth, Doctor ZhivagoPenghargaanNobel Sastra 1958 Boris Leonidovich Pasternak (Rusia: Борис Леонидович Пастернак, 29 Januari 1890 – 30 Mei 1960) ialah seorang penyair dan penulis Rusia yang terkenal di dunia Barat karena novel epiknya D...

 

Mexican racing driver (born 1990) This article is about the racing driver. For other people with the same name, see Sergio Pérez (disambiguation). In this Spanish name, the first or paternal surname is Pérez and the second or maternal family name is Mendoza. Sergio PérezPérez in 2019BornSergio Michel Pérez Mendoza (1990-01-26) 26 January 1990 (age 34)Guadalajara, Jalisco, MexicoOccupationsRacing driverHeight1.73 m (5 ft 8 in)Formula One World Championship care...

 

Ini adalah nama Korea; marganya adalah Kim. Kim Pyong-ilLahir10 Agustus 1954 (umur 69)Pyongyang, Korea Utara (?)AlmamaterUniversitas Kim Il-sungPekerjaanKomandan batalion DPRKSekarang Duta Besar DPRK untuk PolandiaPartai politikPartai Pekerja KoreaSuami/istritidak diketahuiAnakKim Eun-song (putri)Kim In-kang (putra)Nama KoreaJosŏn-gŭl김평일 Hanja金平一 Alih AksaraGim Pyeong-ilMcCune–ReischauerKim P'yŏng'il Kim Pyong-il (kelahiran 10 Agustus 1954 – ) adalah adik seayah dari p...

11th quadrennial U.S. presidential election 1828 United States presidential election ← 1824 October 31 – December 2, 1828 1832 → 261 members of the Electoral College131 electoral votes needed to winTurnout57.3%[1] 30.4 pp   Nominee Andrew Jackson John Quincy Adams Party Democratic National Republican Alliance Nullifier[2][3] Anti-Masonic[5][6][7] Home state Tennessee Massachusetts Running mate John C. Calho...

 

British photographer (1908–1995) George RodgerBorn(1908-03-19)19 March 1908Hale, Cheshire, EnglandDied24 July 1995(1995-07-24) (aged 87)Ashford, Kent, EnglandOccupationPhotographerOrganizationMagnum PhotosSpouses Cicely Rodger (died 1949) Lois Jinx Witherspoon ​ ​(m. 1952)​[1] Children3, including Peter RodgerRelativesElliot Rodger (grandson) George William Adam Rodger (19 March 1908 – 24 July 1995)[2] was a British photojournalist. ...

 

United States historic placeBay RoadU.S. National Register of Historic PlacesU.S. Historic district Bay Road at Wheaton Farm in EastonLocationEaston, MassachusettsNRHP reference No.72000118[1]Added to NRHPMay 5, 1972 United States historic placeOld Bay RoadU.S. National Register of Historic PlacesU.S. Historic district Bay Road near Winnicunnet Pond in NortonLocationNorton, MassachusettsBuilt1640NRHP reference No.74000362[1]Added to NRHPNovember 8, 1974 Bay...

Not to be confused with Pneumococcal pneumonia. Medical conditionPneumocystis pneumoniaOther namesPneumocystis pneumonia; Pneumocystis jirovecii pneumonia; Pneumocystis jiroveci pneumonia; Pneumocystis carinii pneumonia [outdated term]; pneumocystosis;[1] pneumocystiasis;[1] interstitial plasma cell pneumonia;[1] plasma cell pneumoniaPneumocystis jirovecii cysts from bronchoalveolar lavage, stained with Toluidine blue O stainSpecialtyInfectious disease, PulmonologyCaus...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (juillet 2021). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratique : Quelles sources sont attendues ? C...

 

Sketsa lambang tanda pangkat bintang enam, berdasarkan rancangan dalam file Angkatan Darat AS. Pangkat bintang enam adalah pangkat jenderal bintang enam. Untuk di Angkatan Bersenjata Amerika Serikat dinamakan General of the Armies (GAS) dalam Angkatan Darat Amerika Serikat dan Admiral of the Navy (AN) untuk Angkatan Laut Amerika Serikat, yang diusulkan oleh Senat Amerika Serikat. Pangkat militer ini merupakan yang tertinggi di Amerika Serikat sampai saat ini, satu tingkat di atas Jenderal Bes...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

جزء من سلسلة مقالات حولسياسة المخطط الفهرس  [لغات أخرى]‏ التصنيف المواضيع الرئيسية اقتصاد سياسي تاريخ سياسي التاريخ السياسي للعالم فلسفة سياسية الأنظمة السياسية لا سلطة دولة مدينة ديمقراطية ديكتاتورية نظام إداري  [لغات أخرى]‏ فدرالية إقطاعية حكم الجدارة م...

 

Halaman ini berisi artikel tentang nama bahasa Irlandia dari pulau dan negara yang disebut Irlandia. Untuk Negara Irlandia, lihat Republik Irlandia. Untuk bagian dari Britania Raya, lihat Irlandia Utara. Untuk pulau fisik, lihat Irlandia. Citra satelit warna sebenarnya dari Irlandia, yang dikenal dalam bahasa Irlandia dengan sebutan Éire. Éire (Irlandia: [ˈeːɾʲə] ⓘ) adalah kata Irlandia untuk kata Irlandia, nama dari sebuah pulau dan sebuah negara berdaulat. Pengucapan Inggri...

  لمعانٍ أخرى، طالع رودني (توضيح). رودني   الإحداثيات 42°12′17″N 95°57′05″W / 42.204722222222°N 95.951388888889°W / 42.204722222222; -95.951388888889   [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة مونونا  خصائص جغرافية  المساحة 0.420736 كيلومتر مربع (1 أبر...

 

WWE livestreaming event NXT Stand & DeliverPromotional poster featuring Roxanne Perez, Carmelo Hayes, Ilja Dragunov, Tony D'Angelo, Trick Williams, and Lyra ValkyriaPromotionWWEBrand(s)NXTDateApril 6, 2024CityPhiladelphia, PennsylvaniaVenueWells Fargo CenterAttendance16,545[1]WWE Network event chronology ← PreviousElimination Chamber: Perth Next →WrestleMania XL NXT Stand & Deliver chronology ← Previous2023 Next →— NXT major events chronology ...

 

Rushton Triangular Lodge Symbols and inscriptions on the '15' side Schematic diagram Plans and section of the lodge[1] The Triangular Lodge is a folly, designed by Sir Thomas Tresham and constructed between 1593 and 1597 near Rushton, Northamptonshire, England. It is now in the care of English Heritage. The stone used for the construction was alternating bands of dark and light limestone. The lodge is Grade I listed on the National Heritage List for England.[2] Tresham was a ...

South African flame-grilled chicken chain For the 17th century London coffee house, see Nando's Coffee House. Nando's LtdCompany typePrivateIndustryCasual dining/chain restaurantGenreFlame-grilled chickenFounded1987; 37 years ago (1987), Johannesburg, Gauteng, South AfricaFounderFernando Duarte and Robert BrozinKey peopleDick Enthoven, ownerProductsChicken and related cuisineWebsitenandos.com Nando's (/ˈnændoʊz/; Afrikaans: [ˈnandœs]) is a South African multinat...

 

Mythology of Celtic peoples Part of a series onCeltic mythologies Religion (Proto) Deities (list) Animism Gaelic Irish Scottish Brythonic Welsh Breton Cornish Literary works Mythological Cycle Ulster Cycle Fianna Cycle Kings' Cycles Mabinogion Matter of Britain Welsh Triads Motifs Otherworld Beheading game Champion's portion Geas Imbas Sovereignty goddess/Loathly lady Magic mist Niskai Sacred trees Shapeshifting Silver Branch Threefold death Wasteland Well of wisdom Festivals Samhain Calan Ga...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Red King Through the Looking-Glass – news · newspapers · books · scholar · JSTOR (July 2010) (Learn how and when to remove this message) Fictional character Red KingAlice characterRed King snoring, by John TennielFirst appearanceThrough the Looking-GlassCreated byLewis Carr...

Callander Localidad CallanderLocalización de Callander en Stirling CallanderLocalización de Callander en EscociaCoordenadas 56°14′38″N 4°12′52″O / 56.244, -4.21446Entidad Localidad • País  Reino Unido • Nación constitutiva Escocia Escocia • Concejo StirlingPoblación (2016)   • Total 3160 hab.Huso horario UTC±00:00 Sitio web oficial [editar datos en Wikidata] Callander es una localidad situada en el ...

 

African news media service Television channel africanewsCountryFranceBroadcast area 32 African countries Burkina Faso Burundi Cameroon Central African Republic Chad Democratic Republic of the Congo DjiboutiEquatorial Guinea Gabon Gambia Ghana Guinea Guinea-Bissau Ivory Coast Kenya Liberia Madagascar Mali Mauritania Mozambique Niger Nigeria Republic of Congo Rwanda Sao Tome Senegal Sierra Leone South Africa Tanzania Togo Uganda HeadquartersLyon, France(formerly Pointe-Noire, Congo)ProgrammingL...