Structural chemistry

Structural chemistry is a part of chemistry and deals with spatial structures of molecules (in the gaseous, liquid or solid state) and solids (with extended structures that cannot be subdivided into molecules). For structure elucidation[1] a range of different methods is used. One has to distinguish between methods that elucidate solely the connectivity between atoms (constitution) and such that provide precise three dimensional information such as atom coordinates, bond lengths and angles and torsional angles.

Determination methods

The determination of chemical structure include (mainly):

To identify connectivity and the presence of functional groups a variety of methods of molecular spectroscopy and solid state spectroscopy can be used.

Gaseous state

Electron diffraction

Gas electron diffraction focuses on determining the geometrical arrangement of atoms in a gaseous molecule. It does this by interpreting the electron diffraction patterns that result when a molecule is intersected by a beam of electrons. Studies have used gas electron diffraction to obtain equilibrium and vibrationally averaged structures of gases.[8] Gas electron diffraction is also crucial for acquiring data on both stable and unstable free molecules, radicals, and ions, providing essential structural information.[9] For instance, the structure of gaseous fluorofullerene C60F36 was determined using electron diffraction supplemented with quantum chemical calculations.[10]

Microwave spectroscopy

Microwave rotational spectroscopy measures the energies of rotational transitions through microwave radiation for a gasous molecule. The electric dipole moment of the molecules interacts with the electromagnetic field of the exciting microwave photon, which facilitates the measurement of these transitions.[11] It employs chirped-pulse Fourier transform microwave (FTMW) spectroscopy to determine the rotational constants of compounds.[3] This method has long been regarded as robust for the precise determination of structures, with the ability to discern different conformational states of molecules.[12] Its accuracy is highlighted by its application in providing molecular structure in the gas phase, with rotational transitions being particularly informative when ΔJ = ±1.[13]

Liquid state

NMR spectroscopy

Liquid-state NMR spectroscopy has become a principal method for molecular structure elucidation in liquids.[4] It is a flexible method that accommodates a wide array of applications, including structure determination, in situ monitoring, and analysis of mixtures.[14] Techniques like SHARPER (Sensitive, Homogeneous And Resolved PEaks in Real time) have further enhanced the sensitivity of NMR, particularly in reaction monitoring by removing J splittings, which creates very narrow signals that are crucial for accurate analysis.[4] NMR spectroscopy also enables the determination of 3D structures of molecules in the liquid state by measuring interproton distances through Nuclear Overhauser Effect (NOE) experiments.[15]

Solid state

X-ray diffraction

X-ray diffraction is a powerful technique for determining the atomic and molecular structure of crystalline solids.[5] It relies on the interaction of X-rays with the electron density of the crystal lattice, producing diffraction patterns that can be used to deduce the arrangement of atoms.[5] This method has been instrumental in elucidating the structures of a wide range of materials, including organic compounds, inorganic compounds, and proteins.

Using X-ray diffraction to determine the structure of membrane protein

Electron diffraction

Electron diffraction involves firing a beam of electrons at a crystalline sample.[6] Similar to X-ray diffraction, it produces diffraction patterns that can be used to determine the structure of the sample.[6] Electron diffraction is particularly useful for the study of small organic molecules and complex organic compounds.

Neutron diffraction

Neutron diffraction is a technique that employs a beam of neutrons instead of X-rays or electrons.[7] Neutrons interact with atomic nuclei and are sensitive to the positions of light atoms, such as hydrogen.[7] This method is vital for understanding the structure of materials where hydrogen plays a significant role, such as in hydrogen-bonded systems.

Importance and contributions

Structural chemistry is pivotal in understanding the fundamental nature of matter and the properties of materials. Structural chemists play a crucial role in various scientific and industrial fields.[16] The prospective of structural chemistry lies in its ability to address real-world challenges, fuel scientific innovation, and contribute to advancements in various fields. Collaboration, technological advancements, and a multidisciplinary approach will continue to shape the future of structural chemistry, paving the way for groundbreaking discoveries and applications.

Contributions

Structural chemists contribute significantly to drug discovery by elucidating the three-dimensional structures of biological molecules, enabling the design of targeted drugs with higher efficacy and fewer side effects.[17]

Understanding the atomic and molecular arrangements in materials helps in developing new materials with specific properties, leading to innovations in electronics, energy storage, and nanotechnology.[18]

Structural chemistry provides insights into the active sites of catalysts, enabling the design of efficient catalysts for chemical reactions, including those used in sustainable energy technologies.[19]

Structural biologists use techniques like X-ray crystallography and NMR spectroscopy to determine the structures of biomolecules, contributing to our understanding of biological processes and diseases.[20]

Structural chemistry aids in analyzing pollutants, understanding their behavior, and developing methods to mitigate environmental impact.[21]

Challenges

Complexity of systems

As researchers delve into more complex materials and biological systems, determining their structures accurately becomes challenging due to the intricate interactions and large molecular sizes involved. Recent study has found unprecedented applications in the biological context and for the first time enables scientists to address complex questions in biology on the level of molecules, cells, tissues and entire organs, as well as to begin to address important challenges imposed by cardiovascular diseases, cancer, and in digestive and reproductive biology.[22]

Technological limitations

The development of advanced experimental techniques and computational methods is essential. High-resolution techniques like cryo-electron microscopy and advancements in computational simulations are addressing some challenges.[23]

Data analysis

Handling vast amounts of structural data requires sophisticated algorithms and data analysis techniques to extract meaningful information, posing challenges in data interpretation and storage.[24] However, with the advent of deep learning, a branch of machine learning and artificial intelligence, and it has become possible to analyze large datasets with greater accuracy and efficiency.[24] However, method also has its own limitations, such as the lack of training data, imbalanced data, and overfitting.[24]

Future directions

Combining various experimental and computational techniques can provide comprehensive insights into complex structures. Integrating data from X-ray crystallography, NMR spectroscopy, and computational modeling enhances accuracy and reliability. Continued progress in computational simulations, including quantum chemistry and molecular dynamics, will allow researchers to study larger and more complex systems, aiding in predicting and understanding novel structures.[18][17] Open-access databases and collaborative efforts enable researchers worldwide to share structural data, accelerating scientific progress and fostering innovation.[24]

Structural chemistry can contribute to the design of eco-friendly materials and catalysts, promoting sustainable practices in the chemical industry. Structural chemistry can contribute to the design of eco-friendly materials and catalysts, promoting sustainable practices in the chemical industry. Recent development of metal-free nanostructured catalysts is one of the advancements in the field of structural chemistry that has the potential to drive organic transformations in a sustainable manner.[25]

See also

References

  1. ^ David W. H. Rankin, Norbert W. Mitzel, Carole A. Morrison (2013). Structural Methods in Molecular Inorganic Chemistry. Chichester: John Wiley & Sons. ISBN 978-0-470-97278-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ "The use of neutrons for materials characterization", Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation, CRC Press, pp. 15–39, 2003-02-06, doi:10.1201/9780203608999-6, ISBN 9780429211904, retrieved 2023-10-09
  3. ^ a b Martin-Drumel, Marie-Aline; McCarthy, Michael C.; Patterson, David; McGuire, Brett A.; Crabtree, Kyle N. (2016-03-24). "Automated microwave double resonance spectroscopy: A tool to identify and characterize chemical compounds". The Journal of Chemical Physics. 144 (12). Bibcode:2016JChPh.144l4202M. doi:10.1063/1.4944089. hdl:2142/96897. ISSN 0021-9606. PMID 27036441.
  4. ^ a b c Peat, George; Boaler, Patrick J.; Dickson, Claire L.; Lloyd-Jones, Guy C.; Uhrín, Dušan (2023-07-21). "SHARPER-DOSY: Sensitivity enhanced diffusion-ordered NMR spectroscopy". Nature Communications. 14 (1): 4410. Bibcode:2023NatCo..14.4410P. doi:10.1038/s41467-023-40130-2. ISSN 2041-1723. PMC 10361965. PMID 37479704.
  5. ^ a b c "X-ray diffraction | Definition, Diagram, Equation, & Facts | Britannica". www.britannica.com. Retrieved 2023-12-08.
  6. ^ a b c Asadabad, Mohsen Asadi; Eskandari, Mohammad Jafari (2016-02-18), Janecek, Milos; Kral, Robert (eds.), "Electron Diffraction", Modern Electron Microscopy in Physical and Life Sciences, InTech, doi:10.5772/61781, ISBN 978-953-51-2252-4, retrieved 2023-11-07
  7. ^ a b c "7.5: Neutron Diffraction". Chemistry LibreTexts. 2016-07-14. Retrieved 2023-12-08.
  8. ^ Vishnevskiy, Yury V.; Blomeyer, Sebastian; Reuter, Christian G. (2020-04-01). "Gas standards in gas electron diffraction: accurate molecular structures of CO2 and CCl4". Structural Chemistry. 31 (2): 667–677. doi:10.1007/s11224-019-01443-5. ISSN 1572-9001. S2CID 208211778.
  9. ^ Demaison, Jean; Vogt, Natalja (2020), "Molecular Structures from Gas-Phase Electron Diffraction", Accurate Structure Determination of Free Molecules, Lecture Notes in Chemistry, vol. 105, Cham: Springer International Publishing, pp. 167–204, doi:10.1007/978-3-030-60492-9_7, ISBN 978-3-030-60492-9, S2CID 229669307, retrieved 2023-11-07
  10. ^ Belyakov, Alexander V.; Kulishenko, Roman Yu.; Johnson, Robert D.; Shishkov, Igor F.; Rykov, Anatolii N.; Markov, Vitaliy Yu.; Khinevich, Viktor E.; Goryunkov, Alexey A. (2020-12-10). "Structure of C 60 F 36: A Gas-Phase Electron Diffraction and Quantum Chemical Computational Study of a Remarkably Distorted Fluorofullerene". The Journal of Physical Chemistry A. 124 (49): 10216–10224. Bibcode:2020JPCA..12410216B. doi:10.1021/acs.jpca.0c05714. ISSN 1089-5639. PMID 33200926. S2CID 226988867.
  11. ^ "1.10: Microwave Spectroscopy". Chemistry LibreTexts. 2023-01-10. Retrieved 2023-11-07.
  12. ^ Bernstein, Elliot R. (2020). Intra- and Intermolecular Interactions Between Non-covalently Bonded Species. Elsevier. pp. 97–98. ISBN 978-0-12-817586-6.
  13. ^ 1. Purusottam 2. A. Welford, 1.Jena 2. Castleman (2010). Science and Technology of Atomic, Molecular, Condensed Matter & Biological Systems. Elsevier. pp. 173–175. ISBN 978-0-444-53440-8.{{cite book}}: CS1 maint: numeric names: authors list (link)
  14. ^ Aggarwal, Priyanka; Kumari, Pooja; Bhavesh, Neel Sarovar (2022-01-01), Tripathi, Timir; Dubey, Vikash Kumar (eds.), "Chapter 16 - Advances in liquid-state NMR spectroscopy to study the structure, function, and dynamics of biomacromolecules", Advances in Protein Molecular and Structural Biology Methods, Academic Press, pp. 237–266, doi:10.1016/b978-0-323-90264-9.00016-7, ISBN 978-0-323-90264-9, S2CID 246188801, retrieved 2023-12-08
  15. ^ Purslow, Jeffrey A.; Khatiwada, Balabhadra; Bayro, Marvin J.; Venditti, Vincenzo (2020-01-28). "NMR Methods for Structural Characterization of Protein-Protein Complexes". Frontiers in Molecular Biosciences. 7: 9. doi:10.3389/fmolb.2020.00009. ISSN 2296-889X. PMC 6997237. PMID 32047754.
  16. ^ Maier, Joachim (2004-04-02). Physical Chemistry of Ionic Materials. Wiley. doi:10.1002/0470020229. ISBN 978-0-471-99991-1.
  17. ^ a b Provasi, Davide; Filizola, Marta (2023-08-07). "Enhancing Opioid Bioactivity Predictions through Integration of Ligand-Based and Structure-Based Drug Discovery Strategies with Transfer and Deep Learning Techniques". BioRxiv: The Preprint Server for Biology. doi:10.1101/2023.08.04.552065. PMC 10441297. PMID 37609329. Retrieved 2023-12-08.
  18. ^ a b Eguchi, Miharu; Han, Minsu; Asakura, Yusuke; Hill, Jonathan P.; Henzie, Joel; Ariga, Katsuhiko; Rowan, Alan E.; Chaikittisilp, Watcharop; Yamauchi, Yusuke (2023-11-13). "Materials Space-Tectonics: Atomic-level Compositional and Spatial Control Methodologies for Synthesis of Future Materials". Angewandte Chemie International Edition. 62 (46): e202307615. doi:10.1002/anie.202307615. ISSN 1433-7851. PMID 37485623. S2CID 260114714.
  19. ^ Liu, Lichen; Corma, Avelino (April 2021). "Structural transformations of solid electrocatalysts and photocatalysts". Nature Reviews Chemistry. 5 (4): 256–276. doi:10.1038/s41570-021-00255-8. ISSN 2397-3358. PMID 37117283. S2CID 231957705.
  20. ^ Brito, José A.; Archer, Margarida (2020-01-01), Crichton, Robert R.; Louro, Ricardo O. (eds.), "Chapter 10 - Structural biology techniques: X-ray crystallography, cryo-electron microscopy, and small-angle X-ray scattering", Practical Approaches to Biological Inorganic Chemistry (Second Edition), Elsevier, pp. 375–416, doi:10.1016/b978-0-444-64225-7.00010-9, ISBN 978-0-444-64225-7, S2CID 203510759, retrieved 2023-12-08
  21. ^ "How chemistry is helping to improve the environment around us". Royal Society of Chemistry. Retrieved 2023-12-08.
  22. ^ "Complex rheology in biological systems | Royal Society". royalsociety.org. 6 August 2017. Retrieved 2023-12-08.
  23. ^ "Cryo-Electron Microscopy - What it is, How it Works and Pros and Cons". MicroscopeMaster. Retrieved 2023-11-08.
  24. ^ a b c d Sarker, Iqbal H. (2021-08-18). "Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions". SN Computer Science. 2 (6): 420. doi:10.1007/s42979-021-00815-1. ISSN 2661-8907. PMC 8372231. PMID 34426802.
  25. ^ Gholipour, Behnam; Shojaei, Salman; Rostamnia, Sadegh; Naimi-Jamal, Mohammad Reza; Kim, Dokyoon; Kavetskyy, Taras; Nouruzi, Nasrin; Jang, Ho Won; Varma, Rajender S.; Shokouhimehr, Mohammadreza (2021-08-31). "Metal-free nanostructured catalysts: sustainable driving forces for organic transformations". Green Chemistry. 23 (17): 6223–6272. doi:10.1039/D1GC01366A. ISSN 1463-9270. S2CID 237989194.

Read other articles:

Para otros usos de este término, véase Violencia (desambiguación). Este artículo o sección tiene referencias, pero necesita más para complementar su verificabilidad.Este aviso fue puesto el 26 de julio de 2019. La violencia es un tipo de interacción entre individuos o grupos, presente en el reino animal, por medio de la cual un animal o grupo de animales, intencionalmente causa daño o impone una situación, a otro u otros animales.[1]​[2]​[3]​ En las sociedades huma...

 

 

Stasiun Singkarak Singkarak+369 m Stasiun Singkarak, 2023.LokasiSingkarak, X Koto Singkarak, Solok, Sumatera BaratIndonesiaKoordinat0°41′35.6″S 100°35′56.5″E / 0.693222°S 100.599028°E / -0.693222; 100.599028Koordinat: 0°41′35.6″S 100°35′56.5″E / 0.693222°S 100.599028°E / -0.693222; 100.599028Ketinggian+369 mOperator Kereta Api IndonesiaDivisi Regional II Sumatera Barat Letakkm 114+195 lintas Teluk Bayur–Padang–Lubuk A...

 

 

Mario MonicelliLahir(1915-05-16)16 Mei 1915Roma, ItaliaMeninggal29 November 2010(2010-11-29) (umur 95)Roma, ItaliaPekerjaanPenulis latar, sutradara, aktorTahun aktif1935–2010PenghargaanSilver Bear untuk Sutradara Terbaik1957 Padri e figli1976 Caro Michele1981 Il Marchese del Grillo Golden Lion1959 La Grande Guerra Career Golden Lion1991 Lifetime Achievement Mario Monicelli (bahasa Italia: [ˈmaːrjo moniˈtʃɛlli]; 16 Mei 1915 – 29 November 2010) adalah seorang sutradara ...

Unión de Naciones SuramericanasUnião de Nações Sul-AmericanasUnie van Zuid-Amerikaanse NatiesUnion of South American NationsUni Negara Amerika Selatan Bendera Lambang Negara-negara anggota dari UNASUR dalam warna hijau gelap; pengamat menyatakan dalam hijau muda.Pusat administratif Quito[1](Kantor Sekretariat) Cochabamba[2](Kursi parlemen)Bahasa resmiSpanyolBelandaInggrisDemonimAmerika SelatanKeanggotaan 4 anggota  Bolivia  Guyana  Suriname  Venezuela 2...

 

 

Shin-Keisei Dentetsu Co.,Ltd.JenisPublik KK (TYO: 9014)IndustriKereta api swastaDidirikanOctober 23, 1946KantorpusatKunugiyama, Kamagaya, Chiba, JepangTokohkunciTakayoshi Kasai (Presiden)Karyawan460 (2015)IndukKereta Listrik KeiseiAnakusahaBus Funabashi Shin-Keisei Bus Matsudo Shin-KeiseiSitus webwww.shinkeisei.co.jpThe Kereta Api Listrik Shin-Keisei (新京成電鉄code: ja is deprecated , Shin-Keisei Dentetsu) (新京成電鉄, Shin-Keisei Dentetsu?) (新京成電鉄, Shin-Keisei Dentetsu?)...

 

 

Pianfeicomune Pianfei – Veduta LocalizzazioneStato Italia Regione Piemonte Provincia Cuneo AmministrazioneSindacoMarco Turco (lista civica) dal 26-5-2014 TerritorioCoordinate44°22′22″N 7°42′45″E / 44.372778°N 7.7125°E44.372778; 7.7125 (Pianfei)Coordinate: 44°22′22″N 7°42′45″E / 44.372778°N 7.7125°E44.372778; 7.7125 (Pianfei) Altitudine503 m s.l.m. Superficie15,31 km² Abitanti2 098[1 ...

Запрос «Коллективизация» перенаправляется сюда; см. также другие значения. Плакат «вперёд к сплошной коллективизации всего СССР!», 1930-й год. Плакат «На путях коллективизации», 1930-й год Коллективиза́ция — политика объединения единоличных крестьянских хозяйств в ко�...

 

 

Skai JacksonJackson tahun 2018Lahir8 April 2002 (umur 22)New York City, Amerika SerikatPekerjaan Aktris YouTuber penulis Tahun aktif2007–sekarang Skai Jackson (lahir 8 April 2002)[1] adalah seorang aktris asal Amerika Serikat yang termasuk dalam daftar Time of Most Influential Teens pada tahun 2016.[2] Dia terkenal karena memerankan peran Zuri Ross dalam sitkom Disney Channel, Jessie (2011–2015), yang kemudian dia ulangi dalam sekuelnya Bunk'd (2015–2018). Jac...

 

 

Pour la cérémonie des BAFTAs récompensant la télévision, voir la 52e cérémonie des British Academy Television Awards. 58e cérémonie des British Academy Film Awards BAFTA Awards Organisée par la British Academy of Film and Television Arts Détails Date 12 février 2005 Lieu Odeon Leicester Square, Londres Royaume-Uni Présentateur Stephen Fry Diffusé sur BBC Site web http://www.bafta.org/ Résumé Meilleur film Aviator Meilleur film britannique My Summer of Love Film le p...

1997 filmOther MenDirected byClaudio BoniventoWritten byClaudio Bonivento Franco Ferrini Furio ScarpelliCinematographySergio D'OffiziMusic byGianni Coscia Fred FerrariRelease date 1997 (1997) LanguageItalian Other Men (Italian: Altri uomini) is a 1997 Italian crime drama film written and directed by Claudio Bonivento. It is based on real-life characters documented in the Antonio Carlucci and Paolo Rossetti's book Io il Tebano (I, the Theban).[1] For his performance Claudio Amendo...

 

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

 

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2013年8月6日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 此條目剧情、虛構用語或人物介紹过长过细,需清理无关故事主轴的细节、用語和角色介紹。 (2020年10月6日)劇情、用語和人物介紹都只是用於了解故事主軸,輔助�...

Tabula CortonensisFaccia A della TabulaAutoresconosciuto DataII secolo a.C. Materialebronzo Dimensioni45,8×28,5×0,25 cm UbicazioneMAEC, Cortona Coordinate43°16′31.71″N 11°59′04.83″E43°16′31.71″N, 11°59′04.83″E La Tabula Cortonensis è un manufatto in bronzo ritenuto dell'inizio del II secolo a.C. e ritrovato a Cortona in località Le Piagge nel 1992. Indice 1 Storia 2 Descrizione 3 Interpretazione 4 Testo 4.1 Faccia A 4.2 Faccia B 5 Bibliografia 6 Voci correlate 7 A...

 

 

  هذه المقالة عن قائمة رؤساء وزراء الأردن. لمعانٍ أخرى، طالع رئيس وزراء الأردن. إحدى قاعات الاجتماع في رئاسة الوزراء؛ حيث تظهر الحكومة الأردنية في اجتماع ومناقشات مع نظيرتها الهندية بقيادة رئيس وزرائها. إحدى الحكومات الأردنية ويظهر رئيسها إلى جانب الملك بعد تأدية الي...

 

 

Maserati Tipo 151Descrizione generaleCostruttore  Maserati CategoriaSport prototipo ClasseGran Turismo Sperimentali Produzionedal 1962 al 1963 Progettata daGiulio Alfieri SostituisceMaserati Tipo 61 Note3 esemplari prodotti Descrizione tecnicaMeccanicaMotoreMaserati V8 Dimensioni e pesiPeso970 kg Risultati sportiviDebutto24 Ore di Le Mans 1962 La Tipo 151 è una autovettura coupé da competizione costruita dalla Maserati dal 1962 al 1963. Era utilizzata nelle gare di durata, ed aveva due...

Maintaining one's gaze on a single location This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Fixation visual – news · newspapers · books · scholar · JSTOR (December 2018) (Learn how and when to remove this message) Microsaccades and Ocular Drifts Fixation or visual fixation is the maintaining of the gaze on a single location. An animal can exhibit v...

 

 

Ancient Paeonian tribeThis article is about the Thracian tribe. For the river in European Turkey, see Ergene. Paeonia, tribes and environs The Agrianes (Ancient Greek: Ἀγρίανες, Agrianes or Ἀγρίαι Agriai) or Agrianians, were a tribe whose country was centered at Upper Strymon, in present-day central Western Bulgaria as well as southeasternmost Serbia, at the time situated north of the Dentheletae. Per Strabo the source of the river Strymon was within Agrianes' territory. In th...

 

 

「渕上舞 (アイドル)」とは別人です。 この項目には、JIS X 0213:2004 で規定されている文字(ハートマーク)が含まれています(詳細)。 ふちがみ まい渕上 舞プロフィール愛称 まいまい、渕上様[要出典]性別 女性出身地 日本・福岡県福岡市[1][2]生年月日 (1987-05-28) 1987年5月28日(37歳)血液型 A型[3]身長 158 cm[4]職業 声優、歌手事務所 m&i配...

For other uses, see Ghulam Rabbani (disambiguation). Mohammed Ahmad Ghulam RabbaniMohammed Ahmad Ghulam RabbaniBornOctober 1969 (age 54–55)[1][2]Medina, Saudi ArabiaArrestedSeptember 2002Karachi, PakistanDetained at the salt pitGuantanamoISN1461Charge(s)extrajudicial detentionStatusReleasedChildren1 Mohammed Ahmad Ghulam Rabbani is a citizen of Pakistan who was extrajudicially detained by the United States military at the Guantanamo Bay detention camp in C...

 

 

Ethnic group Russian Germans in North America are descended from the many ethnic Germans from Russia who immigrated to North America in the late 19th and early 20th centuries. Russian Germans frequently lived in distinct communities and maintained German language schools and German churches. They were primarily Volga Germans from the lower Volga River valley; Black Sea Germans from the Crimean Peninsula/Black Sea region; or Volhynian Germans from the governorate of Volhynia in what is Ukraine...