Stokesian dynamics

Stokesian dynamics[1] is a solution technique for the Langevin equation, which is the relevant form of Newton's 2nd law for a Brownian particle. The method treats the suspended particles in a discrete sense while the continuum approximation remains valid for the surrounding fluid, i.e., the suspended particles are generally assumed to be significantly larger than the molecules of the solvent. The particles then interact through hydrodynamic forces transmitted via the continuum fluid, and when the particle Reynolds number is small, these forces are determined through the linear Stokes equations (hence the name of the method). In addition, the method can also resolve non-hydrodynamic forces, such as Brownian forces, arising from the fluctuating motion of the fluid, and interparticle or external forces. Stokesian Dynamics can thus be applied to a variety of problems, including sedimentation, diffusion and rheology, and it aims to provide the same level of understanding for multiphase particulate systems as molecular dynamics does for statistical properties of matter. For rigid particles of radius suspended in an incompressible Newtonian fluid of viscosity and density , the motion of the fluid is governed by the Navier–Stokes equations, while the motion of the particles is described by the coupled equation of motion:

In the above equation is the particle translational/rotational velocity vector of dimension 6N. is the hydrodynamic force, i.e., force exerted by the fluid on the particle due to relative motion between them. is the stochastic Brownian force due to thermal motion of fluid particles. is the deterministic nonhydrodynamic force, which may be almost any form of interparticle or external force, e.g. electrostatic repulsion between like charged particles. Brownian dynamics is one of the popular techniques of solving the Langevin equation, but the hydrodynamic interaction in Brownian dynamics is highly simplified and normally includes only the isolated body resistance. On the other hand, Stokesian dynamics includes the many body hydrodynamic interactions. Hydrodynamic interaction is very important for non-equilibrium suspensions, like a sheared suspension, where it plays a vital role in its microstructure and hence its properties. Stokesian dynamics is used primarily for non-equilibrium suspensions where it has been shown to provide results which agree with experiments.[2]

Hydrodynamic interaction

When the motion on the particle scale is such that the particle Reynolds number is small, the hydrodynamic force exerted on the particles in a suspension undergoing a bulk linear shear flow is:

Here, is the velocity of the bulk shear flow evaluated at the particle center, is the symmetric part of the velocity-gradient tensor; and are the configuration-dependent resistance matrices that give the hydrodynamic force/torque on the particles due to their motion relative to the fluid () and due to the imposed shear flow (). Note that the subscripts on the matrices indicate the coupling between kinematic () and dynamic () quantities.

One of the key features of Stokesian dynamics is its handling of the hydrodynamic interactions, which is fairly accurate without being computationally inhibitive (like boundary integral methods) for a large number of particles. Classical Stokesian dynamics requires operations where N is the number of particles in the system (usually a periodic box). Recent advances have reduced the computational cost to about [3][4]

Brownian force

The stochastic or Brownian force arises from the thermal fluctuations in the fluid and is characterized by:

The angle brackets denote an ensemble average, is the Boltzmann constant, is the absolute temperature and is the delta function. The amplitude of the correlation between the Brownian forces at time and at time results from the fluctuation-dissipation theorem for the N-body system.

See also

References

  1. ^ Brady, John; Bossis, Georges (1988). "Stokesian Dynamics". Annu. Rev. Fluid Mech. 20: 111–157. Bibcode:1988AnRFM..20..111B. doi:10.1146/annurev.fl.20.010188.000551.
  2. ^ Seto, Ryohei; Romain Mari (2013). "Discontinuous Shear Thickening of Frictional Hard-Sphere Suspensions". Phys. Rev. Lett. 111 (21): 218301. arXiv:1306.5985. Bibcode:2013PhRvL.111u8301S. doi:10.1103/PhysRevLett.111.218301. PMID 24313532. S2CID 35020010.
  3. ^ Brady, John; Sierou, Asimina (2001). "Accelerated Stokesian Dynamics simulations" (PDF). Journal of Fluid Mechanics. 448 (1): 115–146. Bibcode:2001JFM...448..115S. doi:10.1017/S0022112001005912. S2CID 119505431.
  4. ^ Banchio, Adolfo J.; John F. Brady (2003). "Accelerated Stokesian dynamics: Brownian motion" (PDF). Journal of Chemical Physics. 118 (22): 10323. Bibcode:2003JChPh.11810323B. doi:10.1063/1.1571819.

Read other articles:

Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan Wikipedia. (Februari 2022) i-Radio Bandung (PM3FXU)PT Radio Gema Dwipa Inti NadaKotaBandungWilayah siarBandung, Kabupaten Bandung, Kabupaten Bandung Barat, Kota Cimahi, Kabupaten Garut, Kota Garut, Kabupaten Sum...

 

 

العلاقات الجزائرية الإثيوبية الجزائر إثيوبيا   الجزائر   إثيوبيا تعديل مصدري - تعديل   العلاقات الجزائرية الإثيوبية هي العلاقات الثنائية التي تجمع بين الجزائر وإثيوبيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ال...

 

 

Iranian football club Football clubOghab Tehran FCFull nameOghab Tehran Football ClubNickname(s)The EaglesFounded1946; 74 years agoOwnerIslamic Republic of Iran Air ForceLeague2nd Division Home colours Away colours Oghab Tehran Football Club (Persian: باشگاه فوتبال عقاب تهران, Bashgah-e Futbal-e 'Qab Tehran) is an Iranian football team based in Tehran, Iran. They currently compete in the Tehran Province league and it is owned by the Islamic Republic of Iran Air Force. His...

LewaKecamatanNegara IndonesiaProvinsiNusa Tenggara TimurKabupatenSumba TimurPemerintahan • CamatLexi Cristian HenukPopulasi • Total16,420 jiwa jiwaKode Kemendagri53.11.03 Kode BPS5302010 Luas281,1 km²Desa/kelurahan8 Pertunjukan gramofon di Lewa Paku pada masa Hindia Belanda Lewa adalah sebuah kecamatan di Kabupaten Sumba Timur, Nusa Tenggara Timur, Indonesia. Kecamatan ini berjarak sekira 60 Km ke arah barat daya dari ibu kota Kabupaten Sumba Timur, Kota Waingapu...

 

 

Circondario di Sonnebergcircondario(DE) Landkreis Sonneberg LocalizzazioneStato Germania Land Turingia DistrettoNon presente AmministrazioneCapoluogoSonneberg GovernatoreRobert Sesselmann (AfD) TerritorioCoordinatedel capoluogo50°24′36″N 11°07′48″E / 50.41°N 11.13°E50.41; 11.13 (Circondario di Sonneberg)Coordinate: 50°24′36″N 11°07′48″E / 50.41°N 11.13°E50.41; 11.13 (Circondario di Sonneberg) Altitudine594 m ...

 

 

Questa voce sull'argomento calciatori russi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Aleksej Ionov Ionov nel 2015 Nazionalità  Russia Altezza 177 cm Peso 69 kg Calcio Ruolo Centrocampista Squadra  Ural Carriera Giovanili 2007 Zenit San Pietroburgo Squadre di club1 2007-2010 Zenit San Pietroburgo26 (0)2010-2011 Kuban'7 (1)2011-2012  Zenit San Pietroburgo19 (3)2012-2...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. M. N. ...

 

 

Numismatic association based in the US Not to be confused with American Numismatic Society. This article has sections (Board of Governors and locations) that are far too long and need reorganizing or deleting so-- may be in need of reorganization to comply with Wikipedia's layout guidelines. Please help by editing the article to make improvements to the overall structure. (May 2022) (Learn how and when to remove this template message) American Numismatic AssociationCompany typeMembership-driv...

 

 

Ikan yang tinggal di terumbu karang banyak dan beragam. Ikan terumbu karang adalah ikan yang tinggal di dalam atau berdekatan dengan terumbu karang. Terumbu karang membentuk ekosistem kompleks dengan keragaman hayati. Dari beberapa diantaranya, ikan-ikan tersebut berwarna dan dapat dilihat. Ratusan spesies dapat ada di tempat kecil dari sebuah karang sehat, beberapa diantaranya bersembunyi atau bahkan berkamuflase. Ikan karang mengembangkan beberapa spesialisasi adaptasi untuk bertahan hidup ...

Voce principale: Football Club Treviso. Treviso Foot-Ball ClubStagione 1924-1925Sport calcio Squadra Treviso Allenatore Győző László Presidente Guglielmo Devidè Terza Divisione1º (promosso in Seconda Divisione) 1923-1924 1925-1926 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti il Treviso Foot-Ball Club nelle competizioni ufficiali della stagione 1924-1925. Stagione Pronta la reazione dopo la retrocessione dalla Seconda Divisione nel campio...

 

 

斯洛博丹·米洛舍维奇Слободан МилошевићSlobodan Milošević 南斯拉夫联盟共和国第3任总统任期1997年7月23日—2000年10月7日总理拉多耶·孔蒂奇莫米尔·布拉托维奇前任佐兰·利利奇(英语:Zoran Lilić)继任沃伊斯拉夫·科什图尼察第1任塞尔维亚总统任期1991年1月11日[注]—1997年7月23日总理德拉古京·泽莱诺维奇(英语:Dragutin Zelenović)拉多曼·博若维奇(英语:Radoman Bo...

 

 

Grocery store chain in the United States Heinen'sCompany typePrivateIndustryRetail (Grocery)Founded1929HeadquartersCleveland, OhioRevenueUS$600-700million (2019)Number of employees3,500 (2019)Websitewww.heinens.com Heinen's two brothers brand. Heinen's is a family-owned and operated regional supermarket chain that was founded in 1929. The chain has locations in Northeast Ohio and in the Chicago metropolitan area.[1] It was founded by Joe Heinen, a butcher, who opened the first store n...

Pastel by Edgar Degas The Lyon version. Café-Concert at Les Ambassadeurs (French - Le Café-concert aux ambassadeurs) is a monotype pastel by Edgar Degas of the cafe-concert at the Les Ambassadeurs restaurant. It was first exhibited in 1877 at an Impressionist exhibition and is now in the Musée des Beaux-Arts de Lyon. A later non-monotype version from 1885 is now in the Musée d'Orsay.[1] References ^ Base Joconde: Reference no. 50350016672, French Ministry of Culture. (in French) v...

 

 

Map of the northern lowlands of Guatemala at the time of Spanish contact, showing the location of the Kejache province The Kejache (/keˈχätʃe/) (sometimes spelt Kehache, Quejache, Kehach, Kejach or Cehache) were a Maya people in northern Guatemala at the time of Spanish contact in the 17th century.[1] The Kejache territory was located in the Petén Basin in a region that takes in parts of both Guatemala and Mexico. Linguistic evidence indicates that the Kejache shared a common ori...

 

 

Tongan rugby union player Rugby playerMosese MoalaDate of birth (1978-06-14) 14 June 1978 (age 45)Place of birthTongaHeight192 cm (6 ft 4 in)Weight130 kg (287 lb; 20 st 7 lb)Rugby union careerPosition(s) PropSenior careerYears Team Apps (Points)2006–2010 Biarritz 51 (5)2010–2011 Agen 14 (0)2011–2012 Périgueux 12 (0)2013–2017 Tulle 53 (45) Correct as of 5 May 2021International careerYears Team Apps (Points)2004 Tonga 2 (0) Correct as o...

Austrian-born German-American actress Mady ChristiansBornMarguerita Maria Christians(1892-01-19)January 19, 1892Vienna, Austria-HungaryDiedOctober 28, 1951(1951-10-28) (aged 59)Norwalk, Connecticut, U.S.Years active1916–1949SpouseSven von Müller (editor of the Hamburger Fremdenblatt)RelativesChrista Tordy (cousin) Marguerita Maria Christians (January 19, 1892 – October 28, 1951), known as Mady Christians, was an Austrian-born German-American actress who had a successful acting ...

 

 

Statistical sampling technique Latin hypercube sampling (LHS) is a statistical method for generating a near-random sample of parameter values from a multidimensional distribution. The sampling method is often used to construct computer experiments or for Monte Carlo integration. LHS was described by Michael McKay of Los Alamos National Laboratory in 1979.[1] An independently equivalent technique was proposed by Vilnis Eglājs in 1977.[2] It was further elaborated by Ronald L. ...

 

 

Subset of cuneiform law This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Babylonian law – news · newspapers · books · scholar · JSTOR (March 2017) The ancient Near East Regions and statesFertile Crescent Mesopotamia Sumer Hamazi Subartu Suhum Uruk Akkadian Empire Armani Gutian Dynasty Simurrum Sumer...

For other uses, see Zeeland (disambiguation). City in Michigan, United StatesZeeland, MichiganCityLocation of Zeeland within Ottawa County, MichiganCoordinates: 42°48′45″N 86°01′07″W / 42.81250°N 86.01861°W / 42.81250; -86.01861CountryUnited StatesStateMichiganCountyOttawaGovernment • MayorKevin KlynstraArea[1] • City3.01 sq mi (7.80 km2) • Land2.99 sq mi (7.75 km2) • Wate...

 

 

River in Guinea The Rio Nuñez Incident of 1849 View of the estuary of the Rio Nunez, 1861 Factory of the Compagnie coloniale in Boké, French Guinea Nunez River or Rio Nuñez (Kakandé) is a river in Guinea with its source in the Futa Jallon highlands. It is also known as the Tinguilinta River, after a village along its upper course.[1] Geography Lying between the Kogon River [fr] to the north and the Pongo River to the south, the Nunez empties into the Atlantic Ocean at...