Emission of surface atoms through energetic particle bombardment
In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas.[2] It occurs naturally in outer space, and can be an unwelcome source of wear in precision components. However, the fact that it can be made to act on extremely fine layers of material is utilised in science and industry—there, it is used to perform precise etching, carry out analytical techniques, and deposit thin film layers in the manufacture of optical coatings, semiconductor devices and nanotechnology products. It is a physical vapor deposition technique.[3]
Physics
When energetic ions collide with atoms of a target material, an exchange of momentum takes place between them.[2][4][5]
These ions, known as "incident ions", set off collision cascades in the target. Such cascades can take many paths; some recoil back toward the surface of the target. If a collision cascade reaches the surface of the target, and its remaining energy is greater than the target's surface binding energy, an atom will be ejected. This process is known as "sputtering". If the target is thin (on an atomic scale), the collision cascade can reach through to its back side; the atoms ejected in this fashion are said to escape the surface binding energy "in transmission".
The average number of atoms ejected from the target per incident ion is called the "sputter yield". The sputter yield depends on several things: the angle at which ions collide with the surface of the material, how much energy they strike it with, their masses, the masses of the target atoms, and the target's surface binding energy. If the target possesses a crystal structure, the orientation of its axes with respect to the surface is an important factor.
A model for describing sputtering in the cascade regime for amorphous flat targets is Thompson's analytical model.[6] An algorithm that simulates sputtering based on a quantum mechanical treatment including electrons stripping at high energy is implemented in the program TRIM.[7]
Another mechanism of physical sputtering is called "heat spike sputtering". This can occur when the solid is dense enough, and the incoming ion heavy enough, that collisions occur very close to each other. In this case, the binary collision approximation is no longer valid, and the collisional process should be understood as a many-body process. The dense collisions induce a heat spike (also called thermal spike), which essentially melts a small portion of the crystal. If that portion is close enough to its surface, large numbers of atoms may be ejected, due to liquid flowing to the surface and/or microexplosions.[8] Heat spike sputtering is most important for heavy ions (e.g. Xe or Au or cluster ions) with energies in the keV–MeV range bombarding dense but soft metals with a low melting point (Ag, Au, Pb, etc.). The heat spike sputtering often increases nonlinearly with energy, and can for small cluster ions lead to dramatic sputtering yields per cluster of the order of 10,000.[9] For animations of such a process see "Re: Displacement Cascade 1" in the external links section.
Physical sputtering has a well-defined minimum energy threshold, equal to or larger than the ion energy at which the maximum energy transfer from the ion to a target atom equals the binding energy of a surface atom. That is to say, it can only happen when an ion is capable of transferring more energy into the target than is required for an atom to break free from its surface.
This threshold is typically somewhere in the range of ten to a hundred eV.
Preferential sputtering can occur at the start when a multicomponent solid target is bombarded and there is no solid state diffusion. If the energy transfer is more efficient to one of the target components, or it is less strongly bound to the solid, it will sputter more efficiently than the other. If in an AB alloy the component A is sputtered preferentially, the surface of the solid will, during prolonged bombardment, become enriched in the B component, thereby increasing the probability that B is sputtered such that the composition of the sputtered material will ultimately return to AB.
Electronic sputtering
The term electronic sputtering can mean either sputtering induced by energetic electrons (for example in a transmission electron microscope), or sputtering due to very high-energy or highly charged heavy ions that lose energy to the solid, mostly by electronic stopping power, where the electronic excitations cause sputtering.[10] Electronic sputtering produces high sputtering yields from insulators, as the electronic excitations that cause sputtering are not immediately quenched, as they would be in a conductor. One example of this is Jupiter's ice-covered moon Europa, where a MeV sulfur ion from Jupiter's magnetosphere can eject up to 10,000 H2O molecules.[11]
Potential sputtering
In the case of multiple charged projectile ions a particular form of electronic sputtering can take place that has been termed potential sputtering.[12][13] In these cases the potential energy stored in multiply charged ions (i.e., the energy necessary to produce an ion of this charge state from its neutral atom) is liberated when the ions recombine during impact on a solid surface (formation of hollow atoms). This sputtering process is characterized by a strong dependence of the observed sputtering yields on the charge state of the impinging ion and can already take place at ion impact energies well below the physical sputtering threshold. Potential sputtering has only been observed for certain target species[14] and requires a minimum potential energy.[15]
Etching and chemical sputtering
Removing atoms by sputtering with an inert gas is called ion milling or ion etching.
Sputtering can also play a role in reactive-ion etching (RIE), a plasma process carried out with chemically active ions and radicals, for which the sputtering yield may be enhanced significantly compared to pure physical sputtering. Reactive ions are frequently used in secondary ion mass spectrometry (SIMS) equipment to enhance the sputter rates. The mechanisms causing the sputtering enhancement are not always well understood, although the case of fluorine etching of Si has been modeled well theoretically.[16]
Sputtering observed to occur below the threshold energy of physical sputtering is also often called chemical sputtering.[2][5] The mechanisms behind such sputtering are not always well understood, and may be hard to distinguish from chemical etching. At elevated temperatures, chemical sputtering of carbon can be understood to be due to the incoming ions weakening bonds in the sample, which then desorb by thermal activation.[17] The hydrogen-induced sputtering of carbon-based materials observed at low temperatures has been explained by H ions entering between C-C bonds and thus breaking them, a mechanism dubbed swift chemical sputtering.[18]
Applications and phenomena
Sputtering only happens when the kinetic energy of the incoming particles is much higher than conventional thermal energies (≫ 1 eV). When done with direct current (DC sputtering), voltages of 3-5 kV are used. When done with alternating current (RF sputtering), frequencies are around the 14 MHz range.
Sputter cleaning
Surfaces of solids can be cleaned from contaminants by using physical sputtering in a vacuum. Sputter cleaning is often used in surface science, vacuum deposition and ion plating. In 1955 Farnsworth, Schlier, George, and Burger reported using sputter cleaning in an ultra-high-vacuum system to prepare ultra-clean surfaces for low-energy electron-diffraction (LEED) studies.[19][20][21] Sputter cleaning became an integral part of the ion plating process. When the surfaces to be cleaned are large, a similar technique, plasma cleaning, can be used. Sputter cleaning has some potential problems such as overheating, gas incorporation in the surface region, bombardment (radiation) damage in the surface region, and the roughening of the surface, particularly if over done. It is important to have a cleanplasma in order to not continually recontaminate the surface during sputter cleaning. Redeposition of sputtered material on the substrate can also give problems, especially at high sputtering pressures. Sputtering of the surface of a compound or alloy material can result in the surface composition being changed. Often the species with the least mass or the highest vapor pressure is the one preferentially sputtered from the surface.
Sputter deposition is a method of depositingthin films by sputtering that involves eroding material from a "target" source onto a "substrate", e.g. a silicon wafer, solar cell, optical component, or many other possibilities.[22]Resputtering, in contrast, involves re-emission of the deposited material, e.g. SiO2 during the deposition also by ion bombardment.
Sputtered atoms are ejected into the gas phase but are not in their thermodynamic equilibrium state, and tend to deposit on all surfaces in the vacuum chamber. A substrate (such as a wafer) placed in the chamber will be coated with a thin film. Sputtering deposition usually uses an argon plasma because argon, a noble gas, will not react with the target material.
Sputter damage
Sputter damage is usually defined during transparent electrode deposition on optoelectronic devices, which is usually originated from the substrate's bombardment by highly energetic species. The main species involved in the process and the representative energies can be listed as (values taken from[23]):
Sputtered atoms (ions) from the target surface (~10 eV), the formation of which mainly depends on the binding energy of the target material;
Negative ions (originating from the carrier gas) formed in the plasma (~5–15 eV), the formation of which mainly depends on the plasma potential;
Negative ions formed at the target surface (up to 400 eV), the formation of which mainly depends on the target voltage;
Positive ions formed in the plasma (~15 eV), the formation of which mainly depends on the potential fall in front of a substrate at floating potential;
Reflected atoms and neutralized ions from the target surface (20–50 eV), the formation of which mainly depends on the background gas and the mass of the sputtered element.
As seen in the list above, negative ions (e.g., O− and In− for ITO sputtering) formed at the target surface and accelerated toward the substrate acquire the largest energy, which is determined by the potential between target and plasma potentials. Although the flux of the energetic particles is an important parameter, high-energy negative O− ions are additionally the most abundant species in plasma in case of reactive deposition of oxides. However, energies of other ions/atoms (e.g., Ar+, Ar0, or In0) in the discharge may already be sufficient to dissociate surface bonds or etch soft layers in certain device technologies. In addition, the momentum transfer of high-energy particles from the plasma (Ar, oxygen ions) or sputtered from the target might impinge or even increase the substrate temperature sufficiently to trigger physical (e.g., etching) or thermal degradation of sensitive substrate layers (e.g. thin film metal halide perovskites).
This can affect the functional properties of underlying charge transport and passivation layers and photoactive absorbers or emitters, eroding device performance. For instance, due to sputter damage, there may be inevitable interfacial consequences such as pinning of the Fermi level, caused by damage-related interface gap states, resulting in the formation of Schottky-barrier impeding carrier transport. Sputter damage can also impair the doping efficiency of materials and the lifetime of excess charge carriers in photoactive materials; in some cases, depending on its extent, such damage can even lead to a reduced shunt resistance.[23]
Etching
In the semiconductor industry sputtering is used to etch the target. Sputter etching is chosen in cases where a high degree of etching anisotropy is needed and selectivity is not a concern. One major drawback of this technique is wafer damage and high voltage use.
For analysis
Another application of sputtering is to etch away the target material. One such example occurs in secondary ion mass spectrometry (SIMS), where the target sample is sputtered at a constant rate. As the target is sputtered, the concentration and identity of sputtered atoms are measured using mass spectrometry. In this way the composition of the target material can be determined and even extremely low concentrations (20 μg/kg) of impurities detected. Furthermore, because the sputtering continually etches deeper into the sample, concentration profiles as a function of depth can be measured.
In space
Sputtering is one of the forms of space weathering, a process that changes the physical and chemical properties of airless bodies, such as asteroids and the Moon. On icy moons, especially Europa, sputtering of photolyzed water from the surface leads to net loss of hydrogen and accumulation of oxygen-rich materials that may be important for life. Sputtering is also one of the possible ways that Mars has lost most of its atmosphere and that Mercury continually replenishes its tenuous surface-bounded exosphere.
Optics
Due to its adaptability with a wide range of materials, Sputtering is used to create various types of coatings that enhance the performance of optical components.[24]Anti-reflective coatings are applied to lenses and optical instruments to minimize light reflection and increase light transmission, which improves clarity and reduces glare.[25] Sputtering is also used to deposit reflective coatings on mirrors, ensuring high reflectivity and durability for applications such as telescopes, cameras, and laser systems.[26]
References
^Lobbia, R.B.; Polk, J.E.; Hofer, R.R.; Chaplin, V.H; Jorns, B. (2019-08-19). "Accelerating 23,000 hours of ground test backsputtered carbon on a magnetically shielded Hall thruster". AIAA Propulsion and Energy 2019 Forum. doi:10.2514/6.2019-3898. ISBN978-1-62410-590-6.
^P. Sigmund, Nucl. Instrum. Methods Phys. Res. B (1987). "Mechanisms and theory of physical sputtering by particle impact". Nuclear Instruments and Methods in Physics Research Section B. 27 (1): 1–20. Bibcode:1987NIMPB..27....1S. doi:10.1016/0168-583X(87)90004-8.
^ abBehrisch, Rainer; Eckstein, Wolfgang, eds. (2007). Sputtering by Particle bombardment: Experiments and Computer Calculations from Threshold to Mev Energies. Springer, Berlin.
^J. F. Ziegler, J. P, Biersack, U. Littmark (1984). The Stopping and Range of Ions in Solids," vol. 1 of series Stopping and Ranges of Ions in Matter. Pergamon Press, New York. ISBN978-0-08-021603-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
^T. Schenkel; Briere, M.; Schmidt-Böcking, H.; Bethge, K.; Schneider, D.; et al. (1997). "Electronic Sputtering of Thin Conductors by Neutralization of Slow Highly Charged Ions". Physical Review Letters. 78 (12): 2481. Bibcode:1997PhRvL..78.2481S. doi:10.1103/PhysRevLett.78.2481. S2CID56361399.
^Johnson, R. E.; Carlson, R. W.; Cooper, J. F.; Paranicas, C.; Moore, M. H.; Wong, M. C. (2004). Fran Bagenal; Timothy E. Dowling; William B. McKinnon (eds.). Radiation effects on the surfaces of the Galilean satellites. In: Jupiter. The planet, satellites and magnetosphere. Vol. 1. Cambridge, UK: Cambridge University Press. pp. 485–512. Bibcode:2004jpsm.book..485J. ISBN0-521-81808-7.
^T. A. Schoolcraft and B. J. Garrison, Journal of the American Chemical Society (1991). "Initial stages of etching of the silicon Si110 2x1 surface by 3.0-eV normal incident fluorine atoms: a molecular dynamics study". Journal of the American Chemical Society. 113 (22): 8221. doi:10.1021/ja00022a005.
^Farnsworth, H. E.; Schlier, R. E.; George, T. H.; Burger, R. M. (1955). "Ion Bombardment-Cleaning of Germanium and Titanium as Determined by Low-Energy Electron Diffraction". Journal of Applied Physics. 26 (2). AIP Publishing: 252–253. Bibcode:1955JAP....26..252F. doi:10.1063/1.1721972. ISSN0021-8979.
^Farnsworth, H. E.; Schlier, R. E.; George, T. H.; Burger, R. M. (1958). "Application of the Ion Bombardment Cleaning Method to Titanium, Germanium, Silicon, and Nickel as Determined by Low-Energy Electron Diffraction". Journal of Applied Physics. 29 (8). AIP Publishing: 1150–1161. Bibcode:1958JAP....29.1150F. doi:10.1063/1.1723393. ISSN0021-8979.
^G.S. Anderson and Roger M. Moseson, “Method and Apparatus for Cleaning by Ionic Bombardment,” U.S. Patent #3,233,137 (filed Aug. 28, 1961) (Feb.1, 1966)
H. R. Kaufman, J. J. Cuomo and J. M. E. Harper (1982). "Technology and applications of broad-beam ion sources used in sputtering. Part I. Ion source technology". Journal of Vacuum Science and Technology. 21 (3): 725–736. Bibcode:1982JVST...21..725K. doi:10.1116/1.571819.(The original paper on Kaufman sputter sources.)
Marquesado de Boadilla del Monte Corona marquesalPrimer titular Carlota Luisa Manuela de Godoy y BorbónConcesión Isabel II de España30 de abril de 1853 (Antes condado por Carlos IV desde 1799)Linajes • Godoy (casa de Sueca) • Rúspoli, príncipes del Sacro Imperio (línea menor de los príncipes de Cerveteri, con varonia Marescotti, de la casa condal de Vignanello, y entronque Rúspoli por donde les tocaba el marquesado de Cerveteri) Actual titular María Mónica Ruspoli y Sanchiz (vii...
1662 play The VillainWritten byThomas PorterDate premiered18 October 1662Place premieredLincoln's Inn Fields Theatre, LondonOriginal languageEnglishGenreTragedy The Villain is a 1662 tragedy by the English writer Thomas Porter. It was originally staged by the Duke's Company at the Lincoln's Inn Fields Theatre in London. The first cast included Thomas Betterton as Monsieur Brisac, Henry Harris as Monsieur Beaupre, John Young as Bontefeu, Samuel Sandford as Maligni and Mary Betterton as Bellmon...
Cet article est une ébauche concernant la Turquie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Kilis (province) Administration Pays Turquie Région Région de l'Anatolie du sud-est Capitale Kilis Indicatif téléphonique international +(90) Plaque minéralogique 79 Démographie Population 136 319 hab. (2017[1]) Densité 110 hab./km2 Géographie Superficie 123 900 ha = 1...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Nasu adalah nama Jepang. Tokoh-tokoh dengan nama Jepang ini antara lain: Pemain sepak bola Jepang Daisuke Nasu Jinyu Nasu Shinya Nasu Halaman-halaman lainnya Semua halaman dengan Nasu Semua halaman dengan judul yang mengandung Nasu Halaman disambi...
Latvian politician (born 1941) This article needs to be updated. Please help update this article to reflect recent events or newly available information. (July 2016) Rihards Pīks (2007) Rihards Pīks (born December 31, 1941, in Riga) is a Latvian politician and Member of the European Parliament for the People's Party; part of the European People's Party.[1] He served as the Foreign Minister of Latvia from 2004 to 2009. References ^ Rihards Pīks Curriculum Vitae (PDF). European Parli...
Bagian dari seriAlkitab Kanon Alkitabdan kitab-kitabnya Tanakh(Taurat · Nevi'im · Ketuvim)Kanon Alkitab Kristen · Alkitab IbraniPerjanjian Lama (PL) · Perjanjian Baru (PB) Deuterokanonika · Antilegomena Bab dan ayat dalam Alkitab Apokrifa:(Yahudi · PL · PB) Perkembangan dan Penulisan Penanggalan Kanon Yahudi Perjanjian Lama Kanon Perjanjian Baru Surat-surat Paulus Karya-karya Yohanes Surat-surat Petrus Terjemahandan N...
Executive officer of a U.S. state Party affiliation of current United States auditors: Democratic Auditor Republican Auditor Independent Auditor This article is part of a series on theState governments of the United States State constitution Comparison Statehouse Executive State executives Governor (List) Other common officials: Attorney general Auditor/Comptroller Lieutenant governor Secretary of state Treasurer Agriculture commissioner List of statewide e...
For other people named Richard Bulkeley, see Richard Bulkeley (disambiguation). Irish-born administrator in Nova Scotia from 1749-1800 Richard BulkeleyRichard Bulkeley - self portrait[1]Born26 December 1717Dublin, IrelandDied7 December 1800(1800-12-07) (aged 82)Halifax, Nova ScotiaBuriedSt. Paul's Church (Halifax)Allegiance Kingdom of Great BritainBattles/wars War of the Austrian Succession Father Le Loutre's War Seven Years' War Richard Bulkeley (26 December 1717 – 7 ...
19th-century baking processVienna breadTin Vienna bread, an Austrian version baked in a pan rather than the traditional oval shaped loafTypeBreadPlace of originAustriaRegion or stateVienna Vienna bread is a type of bread that is produced from a process developed in Vienna, Austria, in the 19th century. The Vienna process used high milling of Hungarian grain, and cereal press-yeast for leavening.[1] History Kaisersemmel or Imperial rollIn the 19th century, for the first time, bread was...
هذه المقالة عن المجموعة العرقية الأتراك وليس عن من يحملون جنسية الجمهورية التركية أتراكTürkler (بالتركية) التعداد الكليالتعداد 70~83 مليون نسمةمناطق الوجود المميزةالبلد القائمة ... تركياألمانياسورياالعراقبلغارياالولايات المتحدةفرنساالمملكة المتحدةهولنداالنمساأسترالي�...
Election 1984 United States Senate election in Oregon ← 1978 November 6, 1984 1990 → Nominee Mark Hatfield Margie Hendriksen Party Republican Democratic Popular vote 808,152 406,122 Percentage 66.53% 33.43% County results Hatfield: 60–70% 70–80% U.S. senator before election Mark Hatfield Republican Elected U.S. Senator Mark Hatfield Republican Elections in Oregon Federal government Presidential e...
Maro Sebo Ilir MSIKecamatanNegara IndonesiaProvinsiJambiPemerintahan • CamatM. Amin, S.E., MM.Populasi (2020) • Total15,321 jiwaKode pos36655Kode Kemendagri15.04.08 Kode BPS1504042 Desa/kelurahan7 Desa/1 Kelurahan [[Kategori:Maro Sebo Ilir, {{{nama dati2}}}| ]] [[Kategori:Kecamatan di Kabupaten {{{nama dati2}}}|Maro Sebo Ilir]] Maro Sebo Ilir adalah sebuah Kecamatan di Kabupaten Batang Hari, Provinsi Jambi, Negara Indonesia. Di daerah ini banyak terdapat perk...
Not to be confused with One-party state. Continuous dominance of a single political party in elections This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's factual accuracy may be compromised due to out-of-date information. Please help update this article to reflect recent events or newly available information. (January 2015) This article possibly contains original research. Ple...
Lokasi Luena di Angola Untuk pengertian lain, lihat Luena. Luena (pra-1975: Vila Luso) ialah kota yang terletak di tengah-timur Angola. Luena merupakan ibu kota administratif Provinsi Moxico. Karena ketiadaan jumlah resmi, perkiraan penduduk kota ini bervariasi antara 60.000-200.000 jiwa, termasuk sejumlah pengungsi dari Perang Saudara Angola yang secara resmi berakhir pada tahun 2002. Menyusul kematian pimpinan pemberontak Jonas Malheiro Savimbi, pembicaraan perdamaian dimulai antara pimpina...
Long-ranged guns for land warfare Artilleryman redirects here. For the racehorse, see Artilleryman (horse). For other uses, see Artillery (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Artillery – news · newspapers · books · scholar · JSTOR (June 2022) (Learn how and when to remove this me...
System of three lakes in New Guinea, Indonesia Lake PaniaiLake Paniai, with the town of Enarotali at lower rightLake PaniaiLocation in Central PapuaShow map of Central PapuaLake PaniaiLocation in Indonesian PapuaShow map of Western New GuineaLocationPaniai Regency and Deiyai Regency, Central Papua, IndonesiaCoordinates3°54′S 136°19′E / 3.900°S 136.317°E / -3.900; 136.317Primary outflowsYawei River (Urumuka)Basin countriesIndonesiaMax. length16 km (9.9...
Polish cyclist (born 1987) Aleksandra DawidowiczDawidowicz in 2008Personal informationFull nameAleksandra DawidowiczBorn (1987-02-04) 4 February 1987 (age 37)Kalisz, PolandTeam informationDisciplineMountain bike and roadRoleRiderRider typeMTB: Cross-country Aleksandra Dawidowicz (born 4 February 1987) is a Polish cyclist. She was born in Kalisz. She competed in cross-country at the 2008 Summer Olympics in Beijing, where she placed tenth.[1] She competed again at the 201...
Township in Selangor, Malaysia This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lembah Jaya – news · newspapers · books · scholar · JSTOR (January 2016) (Learn how and when to remove this message) Lembah Jaya is a township in Selangor, Malaysia, located near Ampang. vteState of Selangor Capital: Shah Alam General topicsTopics ...
Warsaw Open 2006SingolareSport Tennis Vincitore Kim Clijsters Finalista Svetlana Kuznecova Punteggio7-5, 6-2 Tornei Singolare Singolare Doppio Doppio 2005 2007 Voce principale: Warsaw Open 2006. Il singolare del Warsaw Open 2006 è stato un torneo di tennis facente parte del WTA Tour 2006. Justine Henin-Hardenne era la detentrice del titolo, ma si è ritirata dal torneo a causa di un infortunio alla schiena. Kim Clijsters ha battuto in finale Svetlana Kuznecova 7-5, 6-2 Indice 1 Teste ...