Space mapping

The space mapping methodology for modeling and design optimization of engineering systems was first discovered by John Bandler in 1993. It uses relevant existing knowledge to speed up model generation and design optimization of a system. The knowledge is updated with new validation information from the system when available.

Concept

The space mapping methodology employs a "quasi-global" formulation that intelligently links companion "coarse" (ideal or low-fidelity) and "fine" (practical or high-fidelity) models of different complexities. In engineering design, space mapping aligns a very fast coarse model with the expensive-to-compute fine model so as to avoid direct expensive optimization of the fine model. The alignment can be done either off-line (model enhancement) or on-the-fly with surrogate updates (e.g., aggressive space mapping).

Methodology

At the core of the process is a pair of models: one very accurate but too expensive to use directly with a conventional optimization routine, and one significantly less expensive and, accordingly, less accurate. The latter (fast model) is usually referred to as the "coarse" model (coarse space). The former (slow model) is usually referred to as the "fine" model. A validation space ("reality") represents the fine model, for example, a high-fidelity physics model. The optimization space, where conventional optimization is carried out, incorporates the coarse model (or surrogate model), for example, the low-fidelity physics or "knowledge" model. In a space-mapping design optimization phase, there is a prediction or "execution" step, where the results of an optimized "mapped coarse model" (updated surrogate) are assigned to the fine model for validation. After the validation process, if the design specifications are not satisfied, relevant data is transferred to the optimization space ("feedback"), where the mapping-augmented coarse model or surrogate is updated (enhanced, realigned with the fine model) through an iterative optimization process termed "parameter extraction". The mapping formulation itself incorporates "intuition", part of the engineer's so-called "feel" for a problem.[1] In particular, the Aggressive Space Mapping (ASM) process displays key characteristics of cognition (an expert's approach to a problem), and is often illustrated in simple cognitive terms.

Development

Following John Bandler's concept in 1993,[1][2] algorithms have utilized Broyden updates (aggressive space mapping),[3] trust regions,[4] and artificial neural networks.[5] Developments include implicit space mapping,[6] in which we allow preassigned parameters not used in the optimization process to change in the coarse model, and output space mapping, where a transformation is applied to the response of the model. A 2004 paper reviews the state of the art after the first ten years of development and implementation.[7] Tuning space mapping[8] utilizes a so-called tuning model—constructed invasively from the fine model—as well as a calibration process that translates the adjustment of the optimized tuning model parameters into relevant updates of the design variables. The space mapping concept has been extended to neural-based space mapping for large-signal statistical modeling of nonlinear microwave devices.[9][10] Space mapping is supported by sound convergence theory and is related to the defect-correction approach.[11]

A 2016 state-of-the-art review is devoted to aggressive space mapping.[12] It spans two decades of development and engineering applications. A comprehensive 2021 review paper [13] discusses space mapping in the context of radio frequency and microwave design optimization; in the context of engineering surrogate model, feature-based and cognition-driven design; and in the context of machine learning, intuition, and human intelligence.

The space mapping methodology can also be used to solve inverse problems. Proven techniques include the Linear Inverse Space Mapping (LISM) algorithm,[14] as well as the Space Mapping with Inverse Difference (SM-ID) method.[15]

Category

Space mapping optimization belongs to the class of surrogate-based optimization methods,[16] that is to say, optimization methods that rely on a surrogate model.

Applications

The space mapping technique has been applied in a variety of disciplines including microwave and electromagnetic design, civil and mechanical applications, aerospace engineering, and biomedical research. Some examples:

Simulators

Various simulators can be involved in a space mapping optimization and modeling processes.

Conferences

Three international workshops have focused significantly on the art, the science and the technology of space mapping.

  • First International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Lyngby, Denmark, Nov. 2000)
  • Second International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Lyngby, Denmark, Nov. 2006)
  • Third International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Reykjavik, Iceland, Aug. 2012)

Terminology

There is a wide spectrum of terminology associated with space mapping: ideal model, coarse model, coarse space, fine model, companion model, cheap model, expensive model, surrogate model, low fidelity (resolution) model, high fidelity (resolution) model, empirical model, simplified physics model, physics-based model, quasi-global model, physically expressive model, device under test, electromagnetics-based model, simulation model, computational model, tuning model, calibration model, surrogate model, surrogate update, mapped coarse model, surrogate optimization, parameter extraction, target response, optimization space, validation space, neuro-space mapping, implicit space mapping, output space mapping, port tuning, predistortion (of design specifications), manifold mapping, defect correction, model management, multi-fidelity models, variable fidelity/variable complexity, multigrid method, coarse grid, fine grid, surrogate-driven, simulation-driven, model-driven, feature-based modeling.

See also

References

  1. ^ a b J.W. Bandler, "Have you ever wondered about the engineer's mysterious 'feel' for a problem?" Archived 2016-09-20 at the Wayback Machine IEEE Canadian Review, no. 70, pp. 50-60, Summer 2013. Reprinted in IEEE Microwave Magazine Archived 2019-09-21 at the Wayback Machine, vol. 19, no. 2, pp.112-122, Mar./Apr. 2018.
  2. ^ J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers, "Space mapping technique for electromagnetic optimization," IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2536-2544, Dec. 1994.
  3. ^ J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers, and K. Madsen,"Electromagnetic optimization exploiting aggressive space mapping," IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 2874-2882, Dec. 1995.
  4. ^ M.H. Bakr, J.W. Bandler, R.M. Biernacki, S.H. Chen and K. Madsen, "A trust region aggressive space mapping algorithm for EM optimization," IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2412-2425, Dec. 1998.
  5. ^ M.H. Bakr, J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang, "Neural space mapping EM optimization of microwave structures," IEEE MTT-S Int. Microwave Symp. Digest (Boston, MA, 2000), pp. 879-882.
  6. ^ J.W. Bandler, Q.S. Cheng, N.K. Nikolova and M.A. Ismail, "Implicit space mapping optimization exploiting preassigned parameters," IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 378-385, Jan. 2004.
  7. ^ J.W. Bandler, Q. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen and J. Søndergaard, "Space mapping: the state of the art," IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 337-361, Jan. 2004.
  8. ^ S. Koziel, J. Meng, J.W. Bandler, M.H. Bakr, and Q.S. Cheng, "Accelerated microwave design optimization with tuning space mapping," IEEE Trans. Microwave Theory Tech., vol. 57, no. 2, pp. 383-394, Feb. 2009.
  9. ^ L. Zhang, J. Xu, M.C.E. Yagoub, R. Ding, and Q.J. Zhang, "Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," IEEE Trans. Microwave Theory Tech., vol. 53, no. 9, pp. 2752-2767, Sep. 2005.
  10. ^ L. Zhang, Q.J. Zhang, and J. Wood, "Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices," IEEE Trans. Microwave Theory Tech., vol. 56, no. 11, pp. 2453-2467, Nov. 2008.
  11. ^ D. Echeverria and P.W. Hemker, "Space mapping and defect correction" Archived 2022-03-31 at the Wayback Machine Computational Methods in Applied Mathematics, vol. 5, no, 2, pp. 107-136, Jan. 2005.
  12. ^ J.E. Rayas-Sanchez,"Power in simplicity with ASM: tracing the aggressive space mapping algorithm over two decades of development and engineering applications", IEEE Microwave Magazine, vol. 17, no. 4, pp. 64-76, April 2016.
  13. ^ J.E. Rayas-Sánchez, S. Koziel, and J.W. Bandler, “Advanced RF and microwave design optimization: a journey and a vision of future trends,” Archived 2021-08-02 at the Wayback Machine (invited), IEEE J. Microwaves, vol. 1, no. 1, pp. 481-493, Jan. 2021.
  14. ^ J.E. Rayas-Sanchez, F. Lara-Rojo and E. Martanez-Guerrero,"A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits"[dead link], IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 960-968 2005.
  15. ^ M. Şimsek and N. Serap Şengör "Solving Inverse Problems by Space Mapping with Inverse Difference Method," Archived 2018-06-18 at the Wayback Machine Mathematics in Industry, vol. 14, 2010, pp 453-460.
  16. ^ A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset,"A rigorous framework for optimization of expensive functions by surrogates," Archived 2018-01-10 at the Wayback Machine Structural Optimization, vol. 17, no. 1, pp. 1-13, Feb. 1999.
  17. ^ T.D. Robinson, M.S. Eldred, K.E. Willcox, and R. Haimes, "Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping," Archived 2022-03-31 at the Wayback Machine AIAA Journal, vol. 46, no. 11, November 2008.
  18. ^ M. Redhe and L. Nilsson, "Optimization of the new Saab 9-3 exposed to impact load using a space mapping technique," Archived 2018-06-15 at the Wayback Machine Structural and Multidisciplinary Optimization, vol. 27, no. 5, pp. 411-420, July 2004.
  19. ^ T. Jansson, L. Nilsson, and M. Redhe, "Using surrogate models and response surfaces in structural optimization—with application to crashworthiness design and sheet metal forming," Archived 2017-01-13 at the Wayback Machine Structural and Multidisciplinary Optimization, vol. 25, no.2, pp 129-140, July 2003.
  20. ^ G. Crevecoeur, H. Hallez, P. Van Hese, Y. D'Asseler, L. Dupré, and R. Van de Walle,"EEG source analysis using space mapping techniques," Archived 2015-09-24 at the Wayback Machine Journal of Computational and Applied Mathematics, vol. 215, no. 2, pp. 339-347, May 2008.
  21. ^ G. Crevecoeur, H. Hallez, P. Van Hese, Y. D'Asseler, L. Dupré, and R. Van de Walle,"A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data," Archived 2017-02-11 at the Wayback Machine Medical & Biological Engineering & Computing, vol. 46, no. 8, pp. 767-777, August 2008.
  22. ^ S. Tu, Q.S. Cheng, Y. Zhang, J.W. Bandler, and N.K. Nikolova, "Space mapping optimization of handset antennas exploiting thin-wire models," IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3797-3807, July 2013.]
  23. ^ N. Friedrich, "Space mapping outpaces EM optimization in handset-antenna design," Archived 2013-09-27 at the Wayback Machine microwaves&rf, Aug. 30, 2013.
  24. ^ Juan C. Cervantes-González, J. E. Rayas-Sánchez, C. A. López, J. R. Camacho-Pérez, Z. Brito-Brito, and J. L. Chavez-Hurtado,"Space mapping optimization of handset antennas considering EM effects of mobile phone components and human body," Int. J. RF and Microwave CAE, vol. 26, no. 2, pp. 121-128, Feb. 2016.
  25. ^ Hany L. Abdel-Malek, Abdel-karim S.O. Hassan, Ezzeldin A. Soliman, and Sameh A. Dakroury, "The Ellipsoidal Technique for Design Centering of Microwave Circuits Exploiting Space-Mapping Interpolating Surrogates," IEEE Trans. Microwave Theory Tech., vol. 54, no. 10, October 2006.
  26. ^ R. Khlissa, S. Vivier, L.A. Ospina Vargas, and G. Friedrich, "Application of Output Space Mapping method for Fast Optimization using Multi-physical Modeling" .
  27. ^ M. Hintermüller and L.N. Vicente, "Space Mapping for Optimal Control of Partial Differential Equations". Archived 2016-07-16 at the Wayback Machine
  28. ^ L. Encica, J. Makarovic, E.A. Lomonova, and A.J.A. Vandenput, "Space mapping optimization of a cylindrical voice coil actuator"[dead link], IEEE Trans. Ind. Appl., vol. 42, no. 6, pp.1437-1444, 2006.
  29. ^ G. Crevecoeur, L. Dupre, L. Vandenbossche, and R. Van de Walle, "Reconstruction of local magnetic properties of steel sheets by needle probe methods using space mapping techniques," Archived 2017-08-08 at the Wayback Machine Journal of Applied Physics, vol. 99, no. 08H905, 2006.
  30. ^ O. Lass, C. Posch, G. Scharrer and S. Volkwein, "Space mapping techniques for a structural optimization problem governed by the p-Laplace equation" Archived 2022-01-30 at the Wayback Machine, Optimization Methods and Software, 26:4-5, pp. 617-642, 2011.
  31. ^ M.A. Ismail, D. Smith, A. Panariello, Y. Wang, and M. Yu, "EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping," Archived 2007-08-24 at the Wayback Machine IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 386-392, Jan. 2004.
  32. ^ J. Ossorio, J.C. Melgarejo, V.E. Boria, M. Guglielmi, and J.W. Bandler, "On the alignment of low-fidelity and high-fidelity simulation spaces for the design of microwave waveguide filters," Archived 2019-09-21 at the Wayback Machine IEEE Trans. Microwave Theory Tech., vol. 66, no. 12, pp. 5183-5196, Dec. 2018.
  33. ^ Q. Zhang, J.W. Bandler, and C. Caloz, "Design of dispersive delay structures (DDSs) formed by coupled C-sections using predistortion with space mapping," Archived 2019-09-21 at the Wayback Machine IEEE Trans. Microwave Theory Tech., vol. 61, no. 12, pp. 4040-4051, Dec. 2013.
  34. ^ K. Booth and J. Bandler, "Space mapping for codesigned magnetics: optimization techniques for high-fidelity multidomain design specifications," Archived 2021-09-13 at the Wayback Machine IEEE Power Electronics Magazine, vol. 7, no. 2, pp. 47-52, Jun. 2020.
  35. ^ K. Booth, H. Subramanyan, J. Liu, and S.M. Lukic, "Parallel frameworks for robust optimization of medium frequency transformers," Archived 2021-09-13 at the Wayback Machine IEEE J. Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 5097-5112, Aug. 2021.
  36. ^ J.E. Rayas-Sánchez, F.E. Rangel-Patiño, B. Mercado-Casillas, F. Leal-Romo, and J.L. Chávez-Hurtado, "Machine learning techniques and space mapping approaches to enhance signal and power integrity in high-speed links and power delivery networks," Archived 2021-09-14 at the Wayback Machine 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), Feb. 2020.
  37. ^ F. Pedersen, P. Weitzmann, and S. Svendsen, "Modeling thermally active building components using space mapping," Proceedings of the 7th Symposium on Building Physics in the Nordic Countries, vol. 1, pp. 896-903. The Icelandic Building Research Institute, 2005.

Read other articles:

Reginald Birkett (pemain sepak bola) Informasi pribadiNama lengkap Reginald Halsey BirkettTanggal lahir (1849-03-28)28 Maret 1849Tempat lahir London, InggrisTanggal meninggal 30 Juni 1898(1898-06-30) (umur 49)Posisi bermain Penjaga gawangKarier senior*Tahun Tim Tampil (Gol) Clapham Rovers Tim nasional1879 Inggris 1 (0) * Penampilan dan gol di klub senior hanya dihitung dari liga domestik Reginald Halsey Birkett (28 Maret 1849 – 30 Juni 1898) adalah seorang pemain sepak b...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Taman Literasi Martha Christina Tiahahu – berita · surat kabar · buku · cendekiawan · JSTOR Taman Literasi Marta Christina Tiahahu adalah sebuah taman yang terletak disekitar komplek atau pusat perbelanjaan d...

 

Mosque in Istanbul, Turkey Kasım Ağa MosqueKasım Ağa MescidiClose-up of the northeast side of the mosque with the brickworkReligionAffiliationIslamLocationLocationIstanbul, TurkeyLocation in the Fatih district of IstanbulGeographic coordinates41°01′44″N 28°56′20″E / 41.0290°N 28.9390°E / 41.0290; 28.9390ArchitectureTypeMosqueStyleByzantineSpecificationsMinaret(s)1Materialsbrick, ashlar Kasım Ağa Mosque (Turkish: Kasım Ağa Mescidi; also Kâsım Bey M...

Polynesian language spoken in Wallis island This article is about the language of Wallis Island, Wallisian, also known as Fakauvea or East Uvean. For the similarly named language of Ouvéa, see West Uvean language. For the official language of Wales, sometimes spelled Walesian, see Welsh language. WallisianFakaʻuveaNative toWallis and FutunaNative speakers10,400 (2000)[1]Language familyAustronesian Malayo-PolynesianOceanicPolynesianNuclear PolynesianWallisianLanguage codesI...

 

Pour les articles homonymes, voir Groupe et Formation musicale. Ne doit pas être confondu avec Ensemble musical. Choreia Kozatska (uk), un groupe ukrainien de musique ancienne (ici à la Philarmonie de Lviv (pl) en 2015). Un groupe musical, groupe de musique, ou plus simplement, un groupe, est un petit ensemble musical comprenant en général moins de dix musiciens, chanteurs ou instrumentistes[réf. nécessaire]. Le terme est surtout utilisé dans la musique pop cont...

 

Chaand Kaa Tukdaa चाँद का टुकड़ाMovie posterSutradaraSaawan Kumar TakProduserSaawan Kumar TakDitulis olehAnwar Khan (dialogues)SkenarioSachin BhowmickCeritaSaawan Kumar TakPemeranSrideviSalman KhanPenata musikMahesh-Kishor (songs),Usha Khanna (BGM)SinematograferG. Shyam KumarPenyuntingJawahar RazdanPerusahaanproduksiSaawan Kumar ProductionsTanggal rilis 19 Agustus 1994 (1994-08-19) Durasi155 minutesNegaraIndiaBahasaHindiPendapatankotorper. ₹13 crore (setar...

You can help expand this article with text translated from the corresponding article in Italian. (December 2010) Click [show] for important translation instructions. View a machine-translated version of the Italian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wik...

 

Location of Blair County in Pennsylvania This is a list of the National Register of Historic Places listings in Blair County, Pennsylvania. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Blair County, Pennsylvania, United States. The locations of National Register properties and districts for which the latitude and longitude coordinates are included below, may be seen in a map.[1] There are 28 properties and ...

 

Marxheimcomune Marxheim – Veduta LocalizzazioneStato Germania Land Baviera Distretto Svevia CircondarioDanubio-Ries TerritorioCoordinate48°45′N 10°57′E / 48.75°N 10.95°E48.75; 10.95 (Marxheim)Coordinate: 48°45′N 10°57′E / 48.75°N 10.95°E48.75; 10.95 (Marxheim) Altitudine405 m s.l.m. Superficie46,58 km² Abitanti2 585[1] (2006-12-31) Densità55,5 ab./km² Altre informazioniCod. postale86688 Prefisso...

University of Virginia basketball court John Paul Jones ArenaLocation295 Massie RoadCharlottesville, Virginia 22903Coordinates38°02′46″N 78°30′25″W / 38.046°N 78.507°W / 38.046; -78.507OwnerUniversity of VirginiaOperatorASM GlobalCapacityBasketball: 14,623[1] Concerts:*End stage 180°: 12,467*End stage 270°: 14,075*End stage 360°: 15,177*Center stage: 15,405*Theatre: 7,352 [2]Record attendance15,219[3](11/12/06 vs. Arizona)Construc...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Apache rokok – berita · surat kabar · buku · cendekiawan · JSTOR Untuk kegunaan lain, lihat Apache. ApacheJenis produkRokok KretekRokok Kretek FilterPemilikJapan TobaccoProdusenPT Karya Dibya Mahard...

 

Walking as a hobby, sport, or leisure activity For other uses, see Hiking (sailing) and Backpacking (wilderness). Hiking in the San Juan Mountains, Colorado A hiker enjoying the view of the Alps Hiking is a long, vigorous walk, usually on trails or footpaths in the countryside. Walking for pleasure developed in Europe during the eighteenth century.[1] Religious pilgrimages have existed much longer but they involve walking long distances for a spiritual purpose associated with specific...

Marine and anti-submarine actions in WWII Battle of the St. LawrencePart of the Battle of the AtlanticGerman submarine U-190 arrives in St. John's, Newfoundland in June 1945 after surrenderingDateMay 1942 – November 1944LocationGulf of St. Lawrence, St. Lawrence RiverResult Allied strategic victory[1]Belligerents  Canada United Kingdom  GermanyCommanders and leaders Percy W. Nelles Leonard W. Murray Karl DönitzStrength  Royal Canadian Navy: 14 frigates 31 corvet...

 

MyNetworkTV affiliate in South Bend, Indiana WMYS redirects here. For the Indianapolis radio station formerly known as WMYS, see WXNT. WMYS-LDSouth Bend, IndianaUnited StatesChannelsDigital: 28 (UHF)Virtual: 69BrandingMyMichianaProgrammingAffiliations69.1: MyNetworkTV69.2: Telemundofor others, see § SubchannelsOwnershipOwnerWeigel Broadcasting(WBND-TV Limited Partnership)Sister stationsWBND-LD, WCWW-LDHistoryFirst air dateDecember 2, 1987 (36 years ago) (1987-12-02)Former ...

 

Place in Svalbard, NorwaySmeerenburgDutch-Danish whaling station (1619–1657)Ghost townSmeerenburgLocation in northwestern SvalbardCoordinates: 79°43′54″N 10°59′42″E / 79.73167°N 10.99500°E / 79.73167; 10.99500Country NorwaySysselSvalbardIslandSpitsbergenSettled1619Closure1657Population • Total0Time zoneUTC+1 (CET) • Summer (DST)+2 Remains of blubber ovens at Smeerenburg The train oil cookery of the Amsterdam chamber of the No...

2012 IAAF World IndoorChampionshipsTrack events60 mmenwomen400 mmenwomen800 mmenwomen1500 mmenwomen3000 mmenwomen60 m hurdlesmenwomen4 × 400 m relaymenwomenField eventsHigh jumpmenwomenPole vaultmenwomenLong jumpmenwomenTriple jumpmenwomenShot putmenwomenCombined eventsPentathlonwomenHeptathlonmenvte The women's 60 metres at the 2012 IAAF World Indoor Championships will be held at the Ataköy Athletics Arena on 10 and 11 March. Medalists Gold Silver Bronze Veronica Campbell-Brown J...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Metropolitan areas of Colombia – news · newspapers · books · scholar · JSTOR (May 2009) (Learn how and when to remove this message) Metropolitan Areas in Colombia Metropolitan Areas in Colombia are officially designated administrative and census areas, composed of an urban cente...

 

Pour un article plus général, voir Tour de France Femmes 2022. 7e étape du Tour de France Femmes 2022 GénéralitésCourse7e étape، Tour de France Femmes 2022Type Étape de montagneDate30 juillet 2022Distance127,1 kmPays FranceLieu de départSélestatLieu d'arrivéeLe MarksteinPartantes122Arrivantes111Vitesse moyenne33,589 km/hDénivelé2 881 mRésultats de l’étape1re Annemiek van Vleuten3 h 47 min 02 s(Movistar Team)2e Demi Vollering+ 3 min 26 s3e Cecilie Uttrup Ludwig+ 5 min 1...

Campionati europei under 20di atletica leggeraSport Atletica leggera TipoIndividuale CategoriaUnder 20 FederazioneEAA ContinenteEuropa OrganizzatoreEuropean Athletic Association TitoloCampione europeounder 20 CadenzaBiennale Sito Interneteuropean-athletics.com StoriaFondazione1970 Numero edizioni27 (al 2023) Ultima edizione2023 Prossima edizione2025 Modifica dati su Wikidata · Manuale I Campionati europei under 20 di atletica leggera (in inglese European Athletics U20 Championships) son...

 

Mark Rutte, Premier ministre des Pays-Bas, devant un mémorial de fortune érigé après la fusillade d'Alphen-sur-le-Rhin, en 2011. Une tuerie de masse est l'assassinat de plusieurs personnes en une courte période[1]. Le FBI les définit comme quatre meurtres ou plus survenant lors d'un événement particulier, sans répit entre les meurtres. Elle survient typiquement en un même lieu, où un nombre important de victimes sont tuées par un individu (ou plus)[2]. Les tueries de masse se sold...