Simons' formula

In the mathematical field of differential geometry, the Simons formula (also known as the Simons identity, and in some variants as the Simons inequality) is a fundamental equation in the study of minimal submanifolds. It was discovered by James Simons in 1968.[1] It can be viewed as a formula for the Laplacian of the second fundamental form of a Riemannian submanifold. It is often quoted and used in the less precise form of a formula or inequality for the Laplacian of the length of the second fundamental form.

In the case of a hypersurface M of Euclidean space, the formula asserts that

where, relative to a local choice of unit normal vector field, h is the second fundamental form, H is the mean curvature, and h2 is the symmetric 2-tensor on M given by h2
ij
= gpqhiphqj
.[2] This has the consequence that

where A is the shape operator.[3] In this setting, the derivation is particularly simple:

the only tools involved are the Codazzi equation (equalities #2 and 4), the Gauss equation (equality #4), and the commutation identity for covariant differentiation (equality #3). The more general case of a hypersurface in a Riemannian manifold requires additional terms to do with the Riemann curvature tensor.[4] In the even more general setting of arbitrary codimension, the formula involves a complicated polynomial in the second fundamental form.[5]

References

Footnotes

  1. ^ Simons 1968, Section 4.2.
  2. ^ Huisken 1984, Lemma 2.1(i).
  3. ^ Simon 1983, Lemma B.8.
  4. ^ Huisken 1986.
  5. ^ Simons 1968, Section 4.2; Chern, do Carmo & Kobayashi 1970.

Books

  • Tobias Holck Colding and William P. Minicozzi, II. A course in minimal surfaces. Graduate Studies in Mathematics, 121. American Mathematical Society, Providence, RI, 2011. xii+313 pp. ISBN 978-0-8218-5323-8
  • Enrico Giusti. Minimal surfaces and functions of bounded variation. Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp. ISBN 0-8176-3153-4
  • Leon Simon. Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii+272 pp. ISBN 0-86784-429-9

Articles

  • S.S. Chern, M. do Carmo, and S. Kobayashi. Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields (1970), 59–75. Proceedings of a Conference in honor of Professor Marshall Stone, held at the University of Chicago, May 1968. Springer, New York. Edited by Felix E. Browder. doi:10.1007/978-3-642-48272-4_2 Closed access icon
  • Gerhard Huisken. Flow by mean curvature of convex surfaces into spheres. J. Differential Geom. 20 (1984), no. 1, 237–266. doi:10.4310/jdg/1214438998 Free access icon
  • Gerhard Huisken. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent. Math. 84 (1986), no. 3, 463–480. doi:10.1007/BF01388742 Closed access icon
  • James Simons. Minimal varieties in Riemannian manifolds. Ann. of Math. (2) 88 (1968), 62–105. doi:10.2307/1970556 Closed access icon

Read other articles:

Amsal 7Kitab Amsal lengkap pada Kodeks Leningrad, dibuat tahun 1008.KitabKitab AmsalKategoriKetuvimBagian Alkitab KristenPerjanjian LamaUrutan dalamKitab Kristen20← pasal 6 pasal 8 → Amsal 7 (disingkat Ams 7) adalah bagian dari Kitab Amsal dalam Alkitab Ibrani dan Perjanjian Lama di Alkitab Kristen.[1][2] Teks Naskah sumber utama: Masoretik, Septuaginta dan Naskah Laut Mati (4Q103 Proverbs). Pasal ini terdiri dari 27 ayat. Berisi nasihat-nasihat yang diucapkan oleh...

 

The suburbs of Perth and Northbridge were combined until 1982 when Northbridge was established as a separate suburb.[1] Streets starting with A or B Name Suburb Date built Name source Other name(s) Notes Image Aberdeen Road Perth By 1838 George Hamilton-Gordon, 4th Earl of Aberdeen The Aberdeen of Aberdeen Street was that Earl of Aberdeen who was Foreign Secretary in the Duke of Wellington's Cabinet when Western Australia was founded...His name first appeared in Aberdeen-road, East P...

 

Cet article concerne la série de jeux vidéo. Pour le premier épisode de cette série, voir Kingdom Hearts (jeu vidéo). Vous lisez un « bon article » labellisé en 2012. Kingdom HeartsLogo du premier opus de la série.Genre jeu d'action-aventureDéveloppeur Squaresoft, Square Enix, JupiterÉditeur Tetsuya Nomura, Shinji HashimotoDistributeur Squaresoft, Disney Interactive StudiosPremier jeu 2002 : Kingdom HeartsPlate-forme PlayStation 2, PlayStation 3, PlayStation 4, ...

Aue-Schwarzenberg Kreis Tempat categoria:Articles mancats de coordenades Negara berdaulatJermanNegara bagian di JermanSaxonia NegaraJerman Ibu kotaAue GeografiLuas wilayah528,33 km² [convert: unit tak dikenal]SejarahDidahului olehQ1787205 dan Kreis Schwarzenberg (en) Pembuatan1r Agustus 1994 Bubar1r Agustus 2008 Dilanjutkan olehErzgebirgskreis Informasi tambahanKode NUTSDED1B Aue-Schwarzenberg merupakan bekas distrik di Negara bagian Saxony, Jerman. Daerah ini dikelilingi oleh (dari sel...

 

Stipole grandi e fotosintetizzanti nella pianta del pisello. La stipola è una parte della foglia, in particolare un'appendice che si differenzia alla base del picciolo in alcuni tipi di foglie. Indice 1 Caratteristiche 2 Esempi 3 Altri progetti 4 Collegamenti esterni Caratteristiche Illustrazione schematica Le stipole derivano dalla zona di contatto fra la parte basale e quella apicale della bozza fogliare e non sono sempre presenti. Possono essere caduche (es. nel faggio) o persistenti, di ...

 

Unincorporated community in Tennessee, United StatesSanta Fe, TennesseeUnincorporated communitySanta Fe, TennesseeShow map of TennesseeSanta Fe, TennesseeShow map of the United StatesCoordinates: 35°44′06″N 87°07′41″W / 35.73500°N 87.12806°W / 35.73500; -87.12806CountryUnited StatesStateTennesseeCountyMauryElevation673 ft (205 m)Time zoneUTC-6 (Central (CST)) • Summer (DST)UTC-5 (CDT)ZIP code38482Area code931GNIS feature ID1307028[...

الرياض الماليةالشعارمعلومات عامةالبلد شركة سعوديةالتأسيس 2008 مالنوع شركة تعمل في مجال الاستثمار و إدارة الصناديقالمقر الرئيسي الرياض - المملكة العربية السعوديةالمنظومة الاقتصاديةالشركة الأم بنك الرياضالفروع الرياض - جدة - الدمام - الخبر - ابها - القصيم - حائل - تبوكالنشاط ...

 

City in Albania This article is about the city in Albania. For other uses, see Lezhë (disambiguation). Municipality in AlbaniaLezhëMunicipalityPhotomontage of Lezhë FlagEmblemLezhëCoordinates: 41°46′55″N 19°38′40″E / 41.78194°N 19.64444°E / 41.78194; 19.64444Country AlbaniaCountyLezhëSettled4th century BCGovernment • MayorPjerin Ndreu[1] (PS)Area • Municipality509.1 km2 (196.6 sq mi)Population (2...

 

追晉陸軍二級上將趙家驤將軍个人资料出生1910年 大清河南省衛輝府汲縣逝世1958年8月23日(1958歲—08—23)(47—48歲) † 中華民國福建省金門縣国籍 中華民國政党 中國國民黨获奖 青天白日勳章(追贈)军事背景效忠 中華民國服役 國民革命軍 中華民國陸軍服役时间1924年-1958年军衔 二級上將 (追晉)部队四十七師指挥東北剿匪總司令部參謀長陸軍...

Pour les articles homonymes, voir Koreatown. Cet article est une ébauche concernant Los Angeles. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Koreatown Vue de Koreatown. Administration Pays États-Unis Ville Los Angeles (comté de Los Angeles, Californie) Démographie Population 124 281 hab. (2008) Géographie Coordonnées 34° 03′ 42″ nord, 118° 18′ 02″&...

 

Prayssac Centre-ville de Prayssac. Blason Administration Pays France Région Occitanie Département Lot Arrondissement Cahors Intercommunalité Communauté de communes de la Vallée du Lot et du Vignoble Maire Mandat Fabienne Sigaud 2020-2026 Code postal 46220 Code commune 46225 Démographie Gentilé Prayssacois, Prayssacoises Populationmunicipale 2 460 hab. (2021 ) Densité 102 hab./km2 Géographie Coordonnées 44° 30′ 18″ nord, 1° 11′ 20″&#...

 

US Open 2007Quad singolare Sport Tennis Vincitore Peter Norfolk Finalista David Wagner Punteggio 7–6(5), 6-2 Tornei Singolare uomini donne   ragazzi ragazze Doppio uomini donne misto ragazzi ragazze Singolare carrozzina uomini donne quad Doppio carrozzina uomini quad Voce principale: US Open 2007. Indice 1 Finale 2 Tabellone 2.1 Legenda 2.2 Round Robin Finale Norfolk ha battuto nel round robin Wagner 7–6(5), 6–2. Tabellone Legenda Q = Qualificato WC = Wild card LL = Lucky loser AL...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Suttsu District, Hokkaido – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message) Suttsu District in Shiribeshi Subprefecture. Suttsu (寿都郡, Suttsu-gun) is a district located in Shiribeshi Subprefecture, Hokkaido, Japan. As ...

 

Pour l’article ayant un titre homophone, voir Moncourt (homonymie). Montcourt La mairie. Administration Pays France Région Bourgogne-Franche-Comté Département Haute-Saône Arrondissement Vesoul Intercommunalité CC des Hauts du Val de Saône Maire Mandat Marie-Claude Mougin 2020-2026 Code postal 70500 Code commune 70359 Démographie Gentilé Montcourtois Populationmunicipale 53 hab. (2021 ) Densité 11 hab./km2 Géographie Coordonnées 47° 55′ 51″ nord, 5°...

 

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロ...

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此條目需要补充更多来源。 (2019年5月2日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:千里達及托巴哥 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 ...

 

ヤブイヌ ヤブイヌ Speothos venaticus 保全状況評価[1][2][3] NEAR THREATENED(IUCN Red List Ver.3.1 (2001))ワシントン条約附属書I 分類 ドメイン : 真核生物 Eukaryota 界 : 動物界 Animalia 門 : 脊索動物門 Chordata 亜門 : 脊椎動物亜門 Vertebrata 綱 : 哺乳綱 Mammalia 目 : 食肉目 Carnivora 科 : イヌ科 Canidae 属 : ヤブイヌ属Speothos Lund, 1839[4] 種 : ヤブイヌ S. venaticus 学名 Speothos venatic...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2017. Giorgio Canali Giorgio Canali (lahir pada tahun 1958 di Predappio, Italia) adalah seorang gitaris dan penyanyi asal Italia. Dia dikenal sebagai penyanyi untuk Rock Indie. Dia berkarier di dunia musik sejak tahun 1990. Diskografi dengan Politrio Effetto E...

Инаугурация Джона Кеннеди Дата 20 января 1961; 63 года назад (1961-01-20) Место Капитолий, Вашингтон Причина Президентские выборы в США (1960) Участники Джон КеннедиЛиндон ДжонсонЭрл УорренСэм Рейберн ← 1957 1963 → Медиафайлы на Викискладе Инаугурация Джона Кеннеди в каче...

 

Indian dancer and choreographer Shakti MohanMohan in 2013OccupationsDancerchoreographerYears active2009–presentRelativesNeeti Mohan (sister)Kriti Mohan (sister)Mukti Mohan (sister) Shakti Mohan is an Indian dancer, choreographer and television personality. She is the winner of Zee TV's dance reality show Dance India Dance 2. She has been a judge and captain of Indian reality show Dance Plus since its inception,.[1] Career Following her victory in the second season of Dance Indi...