Signature (topology)

In the field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four.

This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds, and Hirzebruch signature theorem.

Definition

Given a connected and oriented manifold M of dimension 4k, the cup product gives rise to a quadratic form Q on the 'middle' real cohomology group

.

The basic identity for the cup product

shows that with p = q = 2k the product is symmetric. It takes values in

.

If we assume also that M is compact, Poincaré duality identifies this with

which can be identified with . Therefore the cup product, under these hypotheses, does give rise to a symmetric bilinear form on H2k(M,R); and therefore to a quadratic form Q. The form Q is non-degenerate due to Poincaré duality, as it pairs non-degenerately with itself.[1] More generally, the signature can be defined in this way for any general compact polyhedron with 4n-dimensional Poincaré duality.

The signature of M is by definition the signature of Q, that is, where any diagonal matrix defining Q has positive entries and negative entries.[2] If M is not connected, its signature is defined to be the sum of the signatures of its connected components.

Other dimensions

If M has dimension not divisible by 4, its signature is usually defined to be 0. There are alternative generalization in L-theory: the signature can be interpreted as the 4k-dimensional (simply connected) symmetric L-group or as the 4k-dimensional quadratic L-group and these invariants do not always vanish for other dimensions. The Kervaire invariant is a mod 2 (i.e., an element of ) for framed manifolds of dimension 4k+2 (the quadratic L-group ), while the de Rham invariant is a mod 2 invariant of manifolds of dimension 4k+1 (the symmetric L-group ); the other dimensional L-groups vanish.

Kervaire invariant

When is twice an odd integer (singly even), the same construction gives rise to an antisymmetric bilinear form. Such forms do not have a signature invariant; if they are non-degenerate, any two such forms are equivalent. However, if one takes a quadratic refinement of the form, which occurs if one has a framed manifold, then the resulting ε-quadratic forms need not be equivalent, being distinguished by the Arf invariant. The resulting invariant of a manifold is called the Kervaire invariant.

Properties

  • Compact oriented manifolds M and N satisfy by definition, and satisfy by a Künneth formula.
  • If M is an oriented boundary, then .
  • René Thom (1954) showed that the signature of a manifold is a cobordism invariant, and in particular is given by some linear combination of its Pontryagin numbers.[3] For example, in four dimensions, it is given by . Friedrich Hirzebruch (1954) found an explicit expression for this linear combination as the L genus of the manifold.

See also

References

  1. ^ Hatcher, Allen (2003). Algebraic topology (PDF) (Repr. ed.). Cambridge: Cambridge Univ. Pr. p. 250. ISBN 978-0521795401. Retrieved 8 January 2017.
  2. ^ Milnor, John; Stasheff, James (1962). Characteristic classes. Annals of Mathematics Studies 246. p. 224. CiteSeerX 10.1.1.448.869. ISBN 978-0691081229.
  3. ^ Thom, René. "Quelques proprietes globales des varietes differentiables" (PDF) (in French). Comm. Math. Helvetici 28 (1954), S. 17–86. Retrieved 26 October 2019.

Read other articles:

County in Ireland Galway County redirects here. For the historic UK Parliament constituency, see Galway County (UK Parliament constituency). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: County Galway – news · newspapers · books · scholar · JSTOR (May 2015) (Learn how and when to remove this template messa...

 

  إدارة هيويتينانغو   إدارة هيويتينانغو  خريطة الموقع تقسيم إداري البلد غواتيمالا  [1][2] العاصمة هویهويتينانكو التقسيم الأعلى غواتيمالا  خصائص جغرافية إحداثيات 15°18′51″N 91°28′33″W / 15.314166666667°N 91.475833333333°W / 15.314166666667; -91.475833333333  [3] المساحة ...

 

Brandon SalimLahirBrandon Nicholas Salim19 September 1996 (umur 27)Jakarta, IndonesiaAlmamaterSingapore Institute of ManagementPekerjaanPemeranmodelmusikuspresenterTahun aktif2008—sekarangOrang tuaFerry Salim (bapak) Brandon Nicholas Salim (lahir 19 September 1996) adalah pemeran, model, musikus, dan presenter Indonesia keturunan Tionghoa dan Palembang. Ia merupakan putra dari aktor dan model Indonesia, Ferry Salim. Kehidupan awal Brandon lahir di Jakarta, 19 September 1996. Ia m...

Точка М на аффинной плоскости. Аффи́нная систе́ма координа́т (от лат. affinis «соприкасающийся, близкий, смежный»), также косоуго́льная система координат — прямолинейная система координат в аффинном пространстве. В n {\displaystyle n} -мерном пространстве она задаётся упорядо...

 

Tarcisius Puryatno. Pastor Tarcisius Puryatno, Pr (lahir 12 Juni 1967) adalah mantan Vikaris jenderal Keuskupan Purwokerto dan merupakan imam Projo. Artikel bertopik Katolik ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

Menara Lonceng Santo MarkusInformasi umumJenisMenara loncengLokasiPiazza San MarcoKotaVenesiaNegaraItaliaMulai dibangun1173Rampung1514 (dibangun kembali 1912)Tinggi986 meter (3.235 ft)Desain dan konstruksiArsitekPietro Tribuno Menara Lonceng Santo Markus (bahasa Italia: Campanile di San Marco; bahasa Venesia: Canpanièl de San Marco) adalah menara lonceng Basilika Santo Markus di Venesia, Italia, yang terletak di Piazza San Marco. Ini adalah salah satu simbol kota yang paling dik...

Amistad Dam Port of EntryAmistad Dam Port of EntryLocationCountryUnited StatesLocationSpur 349, Del Rio, Texas 78840(Amistad Dam)Coordinates29°26′59″N 101°03′16″W / 29.449856°N 101.054365°W / 29.449856; -101.054365DetailsOpened1969Phone(830) 774-4345Hours10:00 AM-6:00 PMExit PortLa Amistad, CoahilaStatistics2005 Cars65,0002005 Trucks0Pedestrians(not reported, but believed to be small in number)Websitehttps://www.cbp.gov/contact/ports/del-rioamistad-dam# The...

 

French actress (b. 1953) Isabelle HuppertHuppert at the Berlinale 2024BornIsabelle Anne Madeleine Huppert (1953-03-16) 16 March 1953 (age 71)Paris, FranceAlma materConservatoire à rayonnement régional de VersaillesInstitut national des langues et civilisations orientales (INALCO)Conservatoire national supérieur d'art dramatique (CNSAD)OccupationActressYears active1971–presentWorksPerformancesPartnerRonald Chammah (1982–present)Children3, including Lolita ChammahRelatives...

 

1958 Italian airliner prototype with 4 piston engines AZ-8L The sole prototype of the AZ-8L Role AirlinerType of aircraft Manufacturer Agusta Designer Filippo Zappata First flight 9 June 1958 Retired 1963 Number built 1 The Agusta AZ.8L, or Agusta-Zappata AZ.8L, was an Italian airliner prototype first flown on 9 June 1958. It was of conventional low-wing monoplane configuration with tricycle undercarriage and all-metal construction. Filippo Zappata's design grew out of a twin-engined transpor...

This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (August 2021) (Learn how and when to remove this message) Suburb of Queanbeyan, New South Wales, AustraliaGoogongQueanbeyan, New South WalesGoogongCoordinates35°42′S 149°22′E / 35.700°S 149.367°E / -35.700; 149.367Population7,444...

 

  لمعانٍ أخرى، طالع جيمس برادلي (توضيح). جيمس برادلي   معلومات شخصية الميلاد سنة 1954 (العمر 69–70 سنة)  مواطنة الولايات المتحدة  الأب جون برادلي  الحياة العملية المهنة مؤرخ  اللغات الإنجليزية  تعديل مصدري - تعديل   جيمس برادلي (بالإنجليزية: James Bradley)‏ هو م...

 

Lithograph of John Calvin The French Reformer John Calvin (1509–1564) was a theological writer who produced many sermons, biblical commentaries, letters, theological treatises, and other works. Although nearly all of Calvin's adult life was spent in Geneva, Switzerland (1536–1538 and 1541–1564), his publications spread his ideas of a properly reformed church to many parts of Europe and from there to the rest of the world. It is especially on account of his voluminous publications that ...

SayanDanau roh-roh pegununganSayan Barat, Pegunungan ErgakiTitik tertinggiPuncak2.000 mile[convert: unit tak dikenal] (Mönkh Saridag)Ketinggian2.000–2.700 m (6.600–8.900 ft)Koordinat53°15′07″N 94°58′28″E / 53.25194°N 94.97444°E / 53.25194; 94.97444Koordinat: 53°15′07″N 94°58′28″E / 53.25194°N 94.97444°E / 53.25194; 94.97444DimensiPanjang1.500 km (930 mi)Letak Geografis Pegunungan di Rusi...

 

British peer and politician (1939–2021) The Right HonourableThe Earl of GowriePC FRSLPortrait by Nick Sinclair, 1992Chancellor of the Duchy of LancasterIn office11 September 1984 – 2 September 1985Prime MinisterMargaret ThatcherPreceded byThe Lord CockfieldSucceeded byNorman TebbitMinister of State for the ArtsIn office11 June 1983 – 2 September 1985Prime MinisterMargaret ThatcherPreceded byPaul ChannonSucceeded byRichard LuceMinister of State for Northern IrelandI...

 

Braderochus Braderochus levoiturieri Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Prioninae Genus: Braderochus Braderochus adalah genus kumbang tanduk panjang yang tergolong famili Cerambycidae. Genus ini juga merupakan bagian dari ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang dalam genus ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup ...

Содержание 1 Города республиканского значения (городские округа) 2 Районы (кожууны) 2.1 Бай-Тайгинский 2.2 Барун-Хемчикский 2.3 Дзун-Хемчикский 2.4 Каа-Хемский 2.5 Кызылский 2.6 Монгун-Тайгинский 2.7 Овюрский 2.8 Пий-Хемский 2.9 Сут-Хольский 2.10 Тандинский 2.11 Тере-Хольский 2.12 Тес-Хемски...

 

Number whose divisors add to a multiple of that number Demonstration, with Cuisenaire rods, of the 2-perfection of the number 6 In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number. For a given natural number k, a number n is called k-perfect (or k-fold perfect) if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to kn; a number is thus perfect if and only if it is 2-perfect. A numb...

 

Regent of Scotland from 1543 to 1554 For other people named James Hamilton, see James Hamilton (disambiguation). James Hamilton1st Duke of Châtellerault2nd Earl of ArranThe Duke of Châtellerault wearing the collar of the Order of St MichaelTenure1529–1575PredecessorJames, 1st Earl of ArranSuccessorJames, 3rd Earl of ArranBornc. 1519Died22 January 1575Hamilton Castle, Lanarkshire, ScotlandSpouse(s)Margaret DouglasIssueDetailJames, John, Claud, Anne & othersFatherJames, 1st Earl o...

2021 American filmBlue BayouTheatrical release posterDirected byJustin ChonWritten byJustin ChonProduced by Charles D. King Kim Roth Poppy Hanks Justin Chon Starring Justin Chon Alicia Vikander Mark O'Brien Linh Dan Pham Sydney Kowalske Vondie Curtis-Hall Emory Cohen Cinematography Matthew Chuang Ante Cheng Edited byReynolds BarneyMusic byRoger SuenProductioncompanies Focus Features MACRO Entertainment One Distributed by Focus Features (United States) Universal Pictures (International)[1&...

 

River in Pennsylvania, US For the smaller tributary of the Lackawanna River further upriver, see Meadow Brook (Lackawanna River). Stafford Meadow BrookStafford Meadow CreekSatellite map of Stafford Meadow BrookPhysical characteristicsSource  • locationnear Birchwood Estates in Roaring Brook Township, Lackawanna County, Pennsylvania • elevationbetween 1,560 and 1,580 feet (480 and 480 m) Mouth  • locationLackawanna River in Sc...