Seked

Illustration of the ancient Egyptian measure of Seked compared with the slope of the Great Pyramid

Seked (or seqed) is an ancient Egyptian term describing the inclination of the triangular faces of a right pyramid.[1] The system was based on the Egyptians' length measure known as the royal cubit. It was subdivided into seven palms, each of which was sub-divided into four digits.

The inclination of measured slopes was therefore expressed as the number of horizontal palms and digits relative to each royal cubit rise.

The seked is proportional to the reciprocal of our modern measure of slope or gradient, and to the cotangent of the angle of elevation.[2] Specifically, if s is the seked, m the slope (rise over run), and the angle of elevation from horizontal, then:

The most famous example of a seked slope is of the Great Pyramid of Giza in Egypt built around 2550 BC. Based on modern surveys, the faces of this monument had a seked of ⁠5+1/2, or 5 palms and 2 digits, in modern terms equivalent to a slope of 1.27, a gradient of 127%, and an elevation of 51.84° from the horizontal (in our 360° system).

Overview

Information on the use of the seked in the design of pyramids has been obtained from two mathematical papyri: the Rhind Mathematical Papyrus in the British Museum and the Moscow Mathematical Papyrus in the Museum of Fine Arts.[3]

Although there is no direct evidence of its application from the archaeology of the Old Kingdom, there are a number of examples from the two mathematical papyri, which date to the Middle Kingdom that show the use of this system for defining the slopes of the sides of pyramids, based on their height and base dimensions. The most widely quoted example is perhaps problem 56 from the Rhind Mathematical Papyrus.

The most famous of all the pyramids of Egypt is the Great Pyramid of Giza built around 2550 BC. Based on the surveys of this structure that have been carried out by Flinders Petrie and others, the slopes of the faces of this monument were a seked of ⁠5+1/2, or 5 palms and 2 digits [see figure above] which equates to a slope of 51.84° from the horizontal, using the modern 360° system.[4][5]

This slope would probably have been accurately applied during construction by way of 'A frame' shaped wooden tools with plumb bobs, marked to the correct incline, so that slopes could be measured out and checked efficiently.[6]

Furthermore, according to Petrie's survey data in "The Pyramids and Temples of Gizeh" [7] the mean slope of the Great Pyramid's entrance passage is 26° 31' 23" ± 5". This is less than 1/20 of one degree in deviation from an ideal slope of 1 in 2, which is 26° 33' 54". This equates to a seked of 14 palms, and is generally considered to have been the intentional designed slope applied by the Old Kingdom builders for internal passages.[citation needed]

Pyramid slopes

Casing stone from the Great Pyramid

The seked of a pyramid is described by Richard Gillings in his book 'Mathematics in the Time of the Pharaohs' as follows:

The seked of a right pyramid is the inclination of any one of the four triangular faces to the horizontal plane of its base, and is measured as so many horizontal units per one vertical unit rise. It is thus a measure equivalent to our modern cotangent of the angle of slope. In general, the seked of a pyramid is a kind of fraction, given as so many palms horizontally for each cubit of vertically, where 7 palms = 1 cubit. The Egyptian word 'seked' is thus related [in meaning, not origin] to our modern word 'gradient'.[2]

Many of the smaller pyramids in Egypt have varying slopes; however, like the Great Pyramid of Giza, the pyramid at Meidum is thought to have had sides that sloped by [8] 51.842° or 51° 50' 35", which is a seked of ⁠5+1/2 palms.

The Great Pyramid scholar Professor I E S Edwards considered this to have been the 'normal' or most typical slope choice for pyramids.[9] Flinders Petrie also noted the similarity of the slope of this pyramid to that of the Great Pyramid at Giza, and both Egyptologists considered it to have been a deliberate choice, based on a desire to ensure that the circuit of the base of the pyramids precisely equalled the circumference of a circle that would be swept out if the pyramid's height were used as a radius.[10][clarification needed] Petrie wrote "...these relations of areas and of circular ratio are so systematic that we should grant that they were in the builder's design".[11]

Slopes of edges are simpler ratios than slopes of faces.[12]

See also

References

  1. ^ Gillings: Mathematics in the Time of the Pharaohs 1982: pp 212
  2. ^ a b Gillings: Mathematics in the Time of the Pharaohs 1982: pp 212
  3. ^ Gillings: Mathematics in the Time of the Pharaohs 1982
  4. ^ The History of Mathematics: A Brief Course, by Roger L. Cooke; 2nd Edition; John Wiley & Sons, 2011; ISBN 9781118030240; pp 235-236
  5. ^ The Pyramid Builder's Handbook; by Derek Hitchins; Lulu; 2010; ISBN 9781445751658; pp 83-84
  6. ^ Petrie, William Matthew Flinders (September 2013). "The Pyramids and Temples of Gizeh". Cambridge Core. Retrieved 2020-05-26.
  7. ^ Petrie: The Pyramids and Temples of Gizeh 1893: pp58
  8. ^ Petrie: Medum 1892
  9. ^ Edwards. The Pyramids of Egypt 1979. pp269
  10. ^ Lightbody. Egyptian Tomb Architecture: The Archaeological Facts of Pharaonic Circular Symbolism 2008: pp 22–27,
  11. ^ Petrie Wisdom of the Egyptians 1940: 30
  12. ^ "The Slopes of the Egyptian Pyramids". Retrieved 7 July 2024.
  • Edwards, I E S (1979). The Pyramids of Egypt. Penguin.
  • Gillings, Richard (1982). Mathematics in the Time of the Pharaohs. Dover.
  • Lightbody, David I (2008). Egyptian Tomb Architecture: The Archaeological Facts of Pharaonic Circular Symbolism. British Archaeological Reports International Series S1852. ISBN 978-1-4073-0339-0.
  • Petrie, Sir William Matthew Flinders (1883). The Pyramids and Temples of Gizeh. Field & Tuer. ISBN 0-7103-0709-8.
  • Petrie, Flinders (1892). Medum. David Nutt: London.
  • Petrie, Flinders (1940). Wisdom of the Egyptians. British School of Archaeology in Egypt and B. Quaritch Ltd.

Further reading

Read other articles:

Halaman ini berisi artikel tentang Kota dan munisipalitas. Untuk desa dengan nama yang sama, lihat Kamenica, Leposavić. Kamenica atau Dardana (bahasa Albania: Kamenicë atau Dardanë), atau Kosovska Kamenica (bahasa Serbia: Косовска Каменица), adalah kota dan munisipalitas yang berada di Distrik Gjilan, Kosovo.[a] Menurut sensus tahun 2011, kota Kamenica dihuni oleh 7.331 penduduk, sedangkan untuk keseluruhan munisipalitas sebanyak 36.085 orang. Sejarah Kamenica mempu...

 

 

Jahe cangkang Bentuk tanaman Buah Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Plantae Upakerajaan: Trachaeophyta Divisi: Magnoliophyta Kelas: Liliopsida Ordo: Zingiberales Famili: Zingiberaceae Genus: Alpinia Spesies: Alpinia zerumbet(Pers.) B.L.Burtt & R.M.Sm.[1] Sinonim Costus zerumbet Pers. Alpinia cristata Griff. Alpinia fimbriata Gagnep. Alpinia fluvitialis Hayata Alpinia penicillata Roscoe Alpinia schumanniana Valeton Amomum nutans (Andrews) Schult. Catimbium speciosum (...

 

 

Wilayah bencana kelaparan pada musim gugur 1921. Bencana kelaparan Rusia 1921, juga dikenal dengan sebutan bencana kelaparan Povolzhye, adalah sebuah bencana kelaparan yang terjadi di Bolshevik Rusia yang dimulai pada awal musim semi 1921 dan berakhir pada 1922. Bencana kelaparan tersebut menewaskan sekitar 6 juta orang, yang utamanya berdampak pada wilayah Volga dan Sungai Ural.[1][2][3] Referensi ^ Marxist Dreams and Soviet Realities, Marxist Dreams and Soviet Realit...

American international school in Thorpe, Runnymede, Surrey, EnglandTASIS EnglandLocationThorpe, Runnymede, Surrey, TW20 8TEEnglandCoordinates51°24′29″N 0°31′34″W / 51.408°N 0.526°W / 51.408; -0.526InformationSchool typeAmerican international school(Day & boarding school)Founded1976Sister schoolTASIS SchoolsHeadmasterBryan NixonGradesPre-K — 12Enrollment646Colour(s)Blue and red   MascotTASIS LionAffiliationsCISNEASCWebsitewww.tasisengland.or...

 

 

Presiding officer of the U.S. Continental Congress President of the United States in Congress AssembledSeal of the president of the CongressContinental CongressStyleMr. President (informal)The Honorable (formal)StatusPresiding officerAppointerVote within the CongressFormationSeptember 5, 1774 (1774-09-05)First holderPeyton RandolphFinal holderCyrus GriffinAbolishedNovember 2, 1788 (1788-11-02) This article is part of a series on theUnited StatesContinental Congre...

 

 

حقبة الممالك المتحاربة تاريخ الصين القديم العصر الحجري ح. 8500 – ح. 2070 ق م سلالة شيا ح. 2070 – ح. 1600 ق م سلالة شانغ ح. 1600 – ح. 1046 ق م سلالة تشو ح. 1046 – 256 ق م  تشو الغربية  تشو الشرقية    المجتمع العبيدي    الربيع والخريف    الممالك المتحاربة الإمبراطوري سلا...

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

 

 

Uang logam 1 centavo Brasil Uang logam 1 centavo (R$0,01) adalah nilai nominal uang koin yang pertama kali dikeluarkan di Brasil pada tahun 1994. Uang logam ini memiliki nilai 1/100 di real Brasil, dan dihentikan pada tahun 2006. lbsReal Brasil (R$)Topik Casa da Moeda do Brasil • Banco Central do Brasil • Uang logam Real • Uang kertas Real Uang logam R$0,01 • R$0,05 • R$0,10 • R$0,25 • R$0,50 • R$1 Uang kertas R$1 • R$2 • R$5 • R$10 • R$20 • R$50 • R$100 Artikel be...

 

 

Malaysian state constituency Batu Maung (N37) Penang constituencyBatu Maung (olive) on PenangState constituencyLegislaturePenang State Legislative AssemblyMLA    Mohamad Abdul HamidPHConstituency created2004First contested2004Last contested2023DemographicsElectors (2023)[1]47,226Area (km²)[2]21 Batu Maung is a state constituency in Penang, Malaysia, that has been represented in the Penang State Legislative Assembly since 2004. It covers the southeastern corner ...

Chemical compound Baricitinib Clinical dataTrade namesOlumiant, othersOther namesINCB28050, LY3009104AHFS/Drugs.comMonographMedlinePlusa618033License data US DailyMed: Baricitinib Pregnancycategory AU: D[1][2] Use is contraindicated Routes ofadministrationBy mouthATC codeL04AF02 (WHO) Legal statusLegal status AU: S4 (Prescription only)[4][1] CA: ℞-only[5][6] US: WARNING[3]Rx-only[7] EU:&...

 

 

Village in Hertfordshire, England Not to be confused with Welwyn Garden City. For other uses, see Welwyn (disambiguation). Human settlement in EnglandWelwynSt Mary the Virgin, WelwynWelwynLocation within HertfordshirePopulation8,425 (2011 Census)[1]OS grid referenceTL225165Civil parishWelwyn [2]DistrictWelwyn HatfieldShire countyHertfordshireRegionEastCountryEnglandSovereign stateUnited KingdomPost townWELWYNPostcode districtAL6Dialling code0...

 

 

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) ...

1900年美國總統選舉 ← 1896 1900年11月6日 1904 → 447張選舉人票獲勝需224張選舉人票投票率73.2%[1] ▼ 6.1 %   获提名人 威廉·麥金利 威廉·詹寧斯·布賴恩 政党 共和黨 民主党 家鄉州 俄亥俄州 內布拉斯加州 竞选搭档 西奧多·羅斯福 阿德萊·史蒂文森一世 选举人票 292 155 胜出州/省 28 17 民選得票 7,228,864 6,370,932 得票率 51.6% 45.5% 總統選舉結果地圖,紅色代表�...

 

 

Main Prem Ki Diwani HoonSutradaraSooraj BarjatyaProduserAjit Kumar BarjatyaKamal Kumar BarjatyaRajkumar BarjatyaSkenarioSooraj BarjatyaCeritaSooraj BarjatyaSubodh GhoshPemeranHrithik RoshanAbhishek BachchanKareena KapoorPenata musikAnu MalikSinematograferRajan KinagiPenyuntingMukhtar AhmedDistributorRajshri ProductionsTanggal rilis 26 Juni 2003 (2003-06-26) Durasi197 menitNegaraIndiaBahasaHindi Main Prem Ki Diwani Hoon adalah sebuah film drama romansa komedi Hindi India tahun 2003 ...

 

 

Crime of betraying one's country For other uses, see Treason (disambiguation), High Treason (disambiguation), and Traitor (disambiguation). Traitor redirects here. For the act itself, see Betrayal. A 17th-century illustration of the leaders of the Gunpowder Plot, a failed assassination attempt against James I of England.Criminal law Elements Actus reus Mens rea Causation Concurrence Scope of criminal liability Accessory Accomplice Complicity Corporate Principal Vicarious Severity of offense F...

Questa voce sull'argomento ciclisti polacchi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Łukasz OwsianNazionalità Polonia Altezza181 cm Peso66 kg Ciclismo SpecialitàStrada Squadra Arkéa CarrieraGiovanili 2008-2011MG.K Vis-Norda Whistle Squadre di club 2012-2018 CCC Polkowice2019 CCC Team2020- Arkéa Nazionale 2016- Polonia Statistiche aggiornate al 16 marzo 2024 Modifica dati su Wikidata · Manuale Łukasz Ows...

 

 

Chabad House in Bangkok. The history of Jews in Thailand began in the 18th century with the arrival of Baghdadi Jewish families and Jewish peoples from Europe during the Napoleonic era (1799–1815). History During World War II, Thailand was a part of the Axis powers,[1] however it has had friendly diplomatic relations with Israel since 1954.[2] The Jewish community of Thailand today is mostly made up of the Ashkenazi descendants of refugees from Russia and the Soviet Union. T...

 

 

Railway station in Tel Aviv, Israel Tel Aviv HaHaganaתחנת תל אביב ההגנהIsrael RailwaysGeneral informationLocation32 HaHagana Way, Tel AvivCoordinates32°03′15″N 34°47′05″E / 32.05417°N 34.78472°E / 32.05417; 34.78472Line(s)Jaffa–Jerusalem railwayAyalon railwayPlatforms5Tracks5ConstructionAccessibleYesHistoryOpened22 June 2002; 22 years ago (2002-06-22)Electrified21 December 2019; 4 years ago (2019-12-21)Pa...

German footballer (born 1989) For other people named Thomas Müller, see Thomas Müller (disambiguation). Thomas Müller Müller with Bayern Munich in 2022Personal informationFull name Thomas Müller[1]Date of birth (1989-09-13) 13 September 1989 (age 34)[2]Place of birth Weilheim in Oberbayern, West GermanyHeight 1.85 m (6 ft 1 in)[3]Position(s) Forwardattacking midfielderTeam informationCurrent team Bayern MunichNumber 25Youth career1993–2000 TS...

 

 

List of events ← 1764 1763 1762 1761 1760 1765 in Wales → 1766 1767 1768 1769 1770 Centuries: 16th 17th 18th 19th 20th Decades: 1740s 1750s 1760s 1770s 1780s See also:List of years in WalesTimeline of Welsh history 1765 in Great Britain Scotland Elsewhere Events from the year 1765 in Wales. Incumbents Lord Lieutenant of Anglesey – Sir Nicholas Bayly, 2nd Baronet[1][2][3][4] Lord Lieutenant of Brecknockshire and Lord Lieutenant of Monmouthshire �...