Another name used for the mineral is rhabdite. It forms tetragonalcrystals with perfect 001 cleavage. Its color ranges from bronze to brass yellow to silver white. It has a density of 7.5 and a hardness of 6.5 – 7. It is opaque with a metallic luster and a dark gray streak. It was named after the Austrian scientist Carl Franz Anton Ritter von Schreibers (1775–1852), who was one of the first to describe it from iron meteorites.[3]
In 2007, researchers reported that schreibersite and other meteoric phosphorus bearing minerals may be the ultimate source for the phosphorus that is so important for life on Earth.[9][10][11] In 2013, researchers reported that they had successfully produced pyrophosphite, a possible precursor to pyrophosphate, the molecule associated with ATP, a co-enzyme central to energy metabolism in all life on Earth. Their experiment consisted of subjecting a sample of schreibersite to a warm, acidic environment typically found in association with volcanic activity, activity that was far more common on the primordial Earth. They hypothesized that their experiment might represent what they termed "chemical life", a stage of evolution which may have led to the emergence of fully biological life as exists today.[12]
Lightning strikes may have provided an alternative source of reduced phosphorus species for the synthesis of early biomolecules.[13][6][7]
^Hunter R. H.; Taylor L. A. (1982). "Rust and schreibersite in Apollo 16 highland rocks – Manifestations of volatile-element mobility". Lunar and Planetary Science Conference, 12th, Houston, TX, March 16–20, 1981, Proceedings. Section 1. (A82-31677 15–91). New York and Oxford: Pergamon Press. pp. 253–259. Bibcode:1982LPSC...12..253H.
^Bryant, D. E.; Greenfield, D.; Walshaw, R. D.; Johnson, B. R. G.; Herschy, B.; Smith, C.; Pasek, M. A.; Telford, R.; Scowen, I.; Munshi, T.; Edwards, H. G. M.; Cousins, C. R.; Crawford, I. A.; Kee, T. P. (2013). "Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth". Geochimica et Cosmochimica Acta. 109: 90–112. Bibcode:2013GeCoA.109...90B. doi:10.1016/j.gca.2012.12.043.