Salvinia effect

Giant Salvinia (S. molesta) at different magnifications; in the SEM picture d) the water repelling wax crystals and the four hydrophilic wax free anchor cells at the hair tips are visible.

The Salvinia effect describes the permanent stabilization of an air layer upon a hierarchically structured surface submerged in water. Based on biological models (e.g. the floating ferns Salvinia, backswimmer Notonecta), biomimetic Salvinia-surfaces are used as drag reducing coatings (up to 30% reduction were previously measured on the first prototypes.[1][2] When applied to a ship hull, the coating would allow the boat to float on an air-layer, reducing energy consumption and emissions. Such surfaces require an extremely water repellent super-hydrophobic surface and an elastic hairy structure in the millimeter range to entrap air while submerged. The Salvinia effect was discovered by the biologist and botanist Wilhelm Barthlott (University of Bonn) and his colleagues and has been investigated on several plants and animals since 2002. Publications and patents were published between 2006 and 2016.[3] The best biological models are the floating ferns (Salvinia) with highly sophisticated hierarchically structured hairy surfaces,[4] and the back swimmers (e.g.Notonecta) with a complex double structure of hairs (setae) and microvilli (microtrichia). Three of the ten known Salvinia species show a paradoxical chemical heterogeneity: hydrophilic hair tips, in addition to the super-hydrophobic plant surface, further stabilizing the air layer.[5]

Salvinia, Notonecta and other organisms with air retaining surfaces

Immersed in water, extremely water repellent (super-hydrophobic), structured surfaces trap air between the structures and this air-layer is maintained for a period of time. A silvery shine, due to the reflection of light at the interface of air and water, is visible on the submerged surfaces.

Long lasting air layers also occur in aquatic arthropods which breathe via a physical gill (plastron) e. g. the water spider (Argyroneta) and the saucer bug (Aphelocheirus) Air layers are presumably also conducive to the reduction of friction in fast moving animals under water, as is the case for the back swimmer Notonecta.[6]

The best known examples for long term air retention under water are the floating ferns of genus Salvinia. About ten species of very diverse sizes are found in lentic water in all warmer regions of the earth, one widely spread species (S. natans) found in temperate climates can be even found in Central Europe. The ability to retain air is presumably a survival technique for these plants. The upper side of the floating leaves is highly water repellent and possesses highly complex and species-specific very distinctive hairs.[4] Some species present multicellular free-standing hairs of 0.3–3 mm length (e. g. S. cucullata) while on others, two hairs are connected at the tips (e.g. S. oblongifolia). S. minima and S. natans have four free standing hairs connected at a single base. The Giant Salvinia (S. molesta), as well as S. auriculata, and other closely related species, display the most complex hairs: four hairs grow on a shared shaft; they are connected at their tips. These structures resemble microscopic eggbeaters and are therefore referred to as “eggbeater trichomes”. The entire leaf surface, including the hairs, is covered with nanoscale wax crystals which are the reason for the water repellent properties of the surfaces. These leaf surfaces are therefore a classical example of a “hierarchical structuring“.[4]

The egg-beater hairs of Salvinia molesta and closely related species (e.g. S. auriculata) show an additional remarkable property. The four cells at the tip of each hair (the anchor cells),[3] as opposed to the rest of the hair, are free of wax and therefore hydrophilic; in effect, wettable islands surrounded by a super-hydrophobic surface. This chemical heterogeneity,[5] the Salvinia paradox, enables a pinning of the air water interface to the plant and increases the pressure and longtime stability of the air layer.[5][7]

The air retaining surface of the floating fern does not lead to a reduction in friction. The ecological extremely adaptable Giant Salvinia (S. molesta) is one of the most important invasive plants in all tropical and subtropical regions of the earth and is the cause of economic as well as ecological problems.[8] Its growth rate might be the highest of all vascular plants. In the tropics and under optimal conditions, S. molesta can double its biomass within four days. The Salvinia effect, described here, most likely plays an essential role in its ecological success; the multilayered floating plant mats presumably maintain their function of gas exchange within the air-layer.

The working principle

Backswimmer (Notonecta glauca) under water: the silvery gleam is from the light reflecting off the interface between the air-layer on the wing and the surrounding water.

The Salvinia effect defines surfaces which are able to permanently keep relatively thick air layers as a result of their hydrophobic chemistry, in combination with a complex architecture [9] in nano- and microscopic dimensions.

This phenomenon was discovered during a systematic research on aquatic plants and animals by Wilhelm Barthlott and his colleagues at the University of Bonn between 2002 and 2007.[10] Five criteria have been defined,[11] they enable the existence of stable air layers under water and as of 2009 define the Salvinia effect:[12] (1) hydrophobic surfaces chemistry in combination with (2) nanoscalic structures generate superhydrophobicity, (3) microscopic hierarchical structures ranging from a few mirco- to several millimeters with (4) undercuts and (5) elastic properties. Elasticity appears to be important for the compression of the air-layer in dynamic hydrostatic conditions.[13] An additional optimizing criterion is the chemical heterogeneity of the hydrophilic tips (Salvinia Paradox[4][6]). This is a prime example of a hierarchical structuring on several levels.[12]

In plants and animals, air retaining salvinia effect surfaces are always fragmented in small compartments with a length of 0.5 to 8 cm and the borders are sealed against loss of air by particular microstructures.[1][3][14] Compartments with sealed edges are also important for technical applications.

The working principle is illustrated in for the Giant Salvinia.[4] The leaves of S. molesta are capable of keeping an air layer on its surfaces for a long time when submerged in water. If a leaf is pulled under water, the leaf surface shows a silvery shine. The distinctive feature of S. molesta lies in the long term stability. While the air layer on most hydrophobic surfaces vanishes shortly after submerging, S. molesta is able to stabilize the air for several days to several weeks. The time span is thereby just limited by the lifetime of the leaf.

Schematic illustration of the stabilization of underwater air layers retained by the hydrophilic Anchor cells (“Salvinia paradox”)

The high stability is a consequence of a seemingly paradoxical combination of a superhydrophobic (extremely water repellent) surface with hydrophilic (water attractive) patches on the tips of the structures.

When submerged under water, no water can penetrate the room between the hairs due to the hydrophobic character of the surfaces. However, the water is pinned to the tip of each hair by the four wax free (hydrophilic) end cells. This fixation results in a stabilization of the air layer under water. The principle is shown in the figure.

Two submerged, air retaining surfaces are schematically shown: on the left hand side: a hydrophobic surface. On the right hand side: a hydrophobic surface with hydrophilic tips.

If negative pressure is applied, a bubble is quickly formed on the purely hydrophobic surfaces (left) stretching over several structures. With increasing negative pressure the bubble grows and can detach from the surface. The air bubble rises to the surface and the air layer decreases until it vanishes completely.

In case of the surface with hydrophilic anchor cells (right) the water is pinned to the tips of every structure by the hydrophilic patch on top. These linkages allow the formation of a bubble stretching over several structures; bubble release is suppressed because several links have to be broken first. This results in a higher energy input for the bubble formation. Therefore, an increased negative pressure is needed to form a bubble able to detach from the surface and rise upwards.

Biomimetic technical application

Backswimmers (Notonecta glauca): the interfaces of the wings facing the water have a hierarchical structure composed of long hairs (Satae) and a carpet of microvilli.

Underwater air retaining surfaces are of great interest for technical applications. If a transfer of the effect to a technical surface is successful, ship hulls could be coated with this surface to reduce friction between ship and water resulting in less fuel consumption, fuel costs and reduction of its negative environmental impact (antifouling effect by the air layer).[15] In 2007 first test boats already achieved a ten percent friction reduction [9] and the principle was subsequently patented.[16] By now scientists assume a friction reduction of over 30%.[17]

The underlying principle is schematically shown in a figure. Two flow profiles of laminar flow in water over a solid surface and water flowing over an air retaining surface are compared here.

If water flows over a smooth solid surface, the velocity at the surface is zero due to the friction between water and surface molecules. If an air layer is situated between the solid surface and the water the velocity is higher than zero. The lower viscosity of air (55 times lower than the viscosity of water) reduces the transmission of friction forces by the same factor.

Schematic illustration comparing the fluid dynamics of water along a solid surface and an air retaining surface: Directly at the solid surface the velocity of the water is zero due to the friction of water molecules and surface (left). In the case of the air retaining surface (right) the air layer serves as a slip agent. Due to the low viscosity of the air, the water is able to move on the air-water-interface which means a drag reduction and a velocity higher than zero.

Researchers are currently working on the development of a biomimetic, permanently air retaining surface modeled on S. molesta [18] to reduce friction on ships. Salvinia-Effect surfaces have been proven to quickly and efficiently adsorb oil and can be used for oil-water separation applications [19]

Animations

The biomimetic device BOA (Bionic Oil Adsorber) separates automatically on a purely physical basis oil films from water surfaces. It was developed from the research on Salvina Effect and Lotus Effect in 2018 at the University of Bonn. The oil film (red) is adsorbed onto a biomimetic textile (green) and collected into a floating bowl (grey) for subsequent removal. More information in Barthlott et al. in Phil Trans. Roy. Soc. A. https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0447 - © W. Barthlott, M. Moosmann & M. Mail 2020
The Salvinia Effect for oil water separation: fast and superficial adsorbtion and transport of a crude oil droplet on an air trapping superhydrophobic leaf of Salvinia molesta. More information in Barthlott et al. in Phil Trans. Roy. Soc. A. https://royalsocietypublishing.org/doi/10.1098/rsta.2019.0447 - © W. Barthlott & M. Mail 2020

See also

References

  1. ^ a b Barthlott, W., Mail, M., & C. Neinhuis, (2016) Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Phil. Trans. R. Soc. A 374.2073 DOI:10.1098/rsta.2016.0191
  2. ^ Barthlott, W., Mail, M., Bhushan, B., & K. Koch. (2017). Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-Micro Letters, 9(23), doi:10.1007/s40820-016-0125-1.
  3. ^ a b c Barthlott, W., Wiersch, S., Čolić, Z., & K. Koch, (2009) Classification of trichome types within species of the water fern Salvinia, and ontogeny of the egg-beater trichomes. Botany. 87(9). pp 830–836, DOI:10.1139/B09-048.
  4. ^ a b c d e Barthlott, W., Schimmel, T., Wiersch, S., Koch, K., Brede, M., Barczewski, M., Walheim, S., Weis, A., Kaltenmaier, A., Leder, A., & H. Bohn, (2010). The Salvinia Paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Advanced Materials. 22(21). pp 2325–2328, DOI:10.1002/adma.200904411.
  5. ^ a b c Ditsche-Kuru, P., Schneider, E.S., Melskotte, J.-E., Brede, M., Leder, A., & W. Barthlott, (2011) Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention. Beilstein Journal of Nanotechnology. 2(1). pp 137–144, DOI:10.3762/bjnano.2.17.
  6. ^ a b Amabili, M., Giacomello, A., Meloni, S.,& C. M. Casciola, (2015) Unraveling the Salvinia Paradox: Design Principles for Submerged Superhydrophobicity. Advanced Materials Interfaces. 2(14). DOI:10.1002/admi.201500248.
  7. ^ http://www.environment.gov.au/biodiversity/invasive/weeds/publications/guidelines/wons/pubs/s-molesta.pdf [bare URL PDF]
  8. ^ Konrad, W., Apeltauer, C., Frauendiener, J., Barthlott, W., & A. Roth-Nebelsick, (2009) Applying methods from differential geometry to devise stable and persistent air layers attached to objects immersed in water. Journal of Bionic Engineering 6(4), pp 350–356, DOI: 10.1016/S1672-6529(08)60133-X
  9. ^ a b BMBF-Projekt PTJ-BIO/311965A: "Superhydrophobe Grenzflächen – ein mögliches Potenzial für hydrodynamische technische Innovationen", Bonn 2002–2007.
  10. ^ Solga, A., Cerman, Z., Striffler, B.F., Spaeth, M. & W. Barthlott. (2007) The dream of staying clean: Lotus and biomimetic surfaces. Bioinspir. Biomim. 4(2), pp 126–134. DOI:10.1088/1748-3182/2/4/S02
  11. ^ Mail, M., Böhnlein, B., Mayser, M. & W. Barthlott. (2014) Bionische Reibungsreduktion: Eine Lufthülle hilft Schiffen Treibstoff zu sparen In: A. B. Kesel, D. Zehren (ed.): Bionik: Patente aus der Natur – 7. Bremer Bionik Kongress, Bremen pp 126 – 134. ISBN 978-3-00-048202-1.
  12. ^ a b Koch, K., Bohn, H.F. & W. Barthlott. (2009) Hierarchically Sculptured Plant Surfaces and Superhydrophobicity. Langmuir. 25(24), pp 14116–14120.DOI:10.1021/la9017322 .
  13. ^ Ditsche, P., Gorb, E., Mayser, M., Gorb, S., Schimmel, T. & W. Barthlott. (2015) Elasticity of the hair cover in air-retaining Salvinia surfaces. Applied Physics A. DOI:10.1007/s00339-015-9439-y.
  14. ^ Balmert, A., Bohn, H.F., Ditsche-Kuru, P. & W. Barthlott. (2011) Dry under water: Comparative morphology and functional aspects of air-retaining insect surfaces. Journal of Morphology. 272(4), pp 442–451, DOI:10.1002/jmor.10921.
  15. ^ Klein, S. (2012). Effizienzsteigerung in der Frachtschifffahrt unter ökonomischen und ökologischen Aspekten am Beispiel der Reederei Hapag Lloyd. Projektarbeit Gepr. Betriebswirt (IHK), Akademie für Welthandel.
  16. ^ Barthlott, W. (2023): “The Discovery of the Lotus Effect as a Key Innovation for Biomimetic Technologies” -  in: Handbook of Self-Cleaning Surfaces and Materials: From Fundamentals to Applications, Chapter 15, pp. 359-369 - Wiley-VCH, https://doi.org/10.1002/9783527690688.ch15
  17. ^ Melskotte, J.-E., Brede, M., Wolter, A., Barthlott, W. & A. Leder.(2013). Schleppversuche an künstlichen, Luft haltenden Oberflächen zur Reibungsreduktion am Schiff. In: C. J. Kähler, R. Hain, C. Cierpka, B. Ruck, A. Leder, D. Dopheide (ed.): Lasermethoden in der Strömungsmesstechnik. München , Beitrag 53.
  18. ^ Tricinci, O., Terencio, T.,Mazzolai, B., Pugno, N., Greco, F. & V. Matolli. (2015). 3D micropatterned surface inspired by salvinia molesta via direct laser lithography. ACS applied materials & interfaces 7(46): 25560-25567. DOI:10.1021/acsami.5b07722
  19. ^ Zeiger, C., da Silva, I. C. R., Mail, M., Kavalenka, M. N., Barthlott, W., & H. Hölscher. (2016). Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials. Bioinspiration & Biomimetics, 11(5), DOI: 10.1088/1748-3190/11/5/056003

Further reading

  • Barthlott, Wilhelm; Schimmel, Thomas; Wiersch, Sabine; Koch, Kerstin; Brede, Martin; Barczewski, Matthias; Walheim, Stefan; Weis, Aaron; Kaltenmaier, Anke; Leder, Alfred; Bohn, Holger F. (2010), "The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water", Advanced Materials (in German), vol. 22, no. 21, pp. 2325–2328, Bibcode:2010AdM....22.2325B, doi:10.1002/adma.200904411, PMID 20432410, S2CID 205236244
  • P. Ditsche-Kuru, M. J. Mayser, E. S. Schneider, H. F. Bohn, K. Koch, J.-E. Melskotte, M. Brede, A. Leder. M. Barczewski, A. Weis, A. Kaltenmaier, S. Walheim, Th. Schimmel, W. Barthlott: Eine Lufthülle für Schiffe – Können Schwimmfarn und Rückenschwimmer helfen Sprit zu sparen? In: A. B. Kesel, D. Zehren (ed.): Bionik: Patente aus der Natur −5. Bremer Bionik Kongress. A. B. Kesel & D. Zehren. Bremen 2011,Seiten 159–165.
  • "Salvinia Effect", Biomimetics: Bioinspired Hierarchical-structured Surfaces for Green Science and Technology (in German), Berlin/New York: Springer, pp. 179–186, 2012, ISBN 978-3-642-25407-9
  • Konrad, Wilfried; Apeltauer, Christian; Frauendiener, Jörg; Barthlott, Wilhelm; Roth-Nebelsick, Anita (2009), "Applying methods from differential geometry to devise stable and persistent air layers attached to objects immersed in water", Journal of Bionic Engineering (in German), vol. 4, no. 6, pp. 350–356, doi:10.1016/S1672-6529(08)60133-X, S2CID 53338503
  • S. Klein: Effizienzsteigerung in der Frachtschifffahrt unter ökonomischen und ökologischen Aspekten am Beispiel der Reederei Hapag Lloyd, Projektarbeit Gepr. Betriebswirt (IHK), Akademie für Welthandel, 2012.
  • W. Baumgarten, B. Böhnlein, A. Wolter, M. Brede, W. Barthlott, A. Leder: Einfluss der Strömungsgeschwindigkeit auf die Stabilität von Luft-Wasser Grenzflächen an biomimetischen, Luft haltenden Beschichtungen. In: B. Ruck, C. Gromke, K. Klausmann, A. Leder, D. Dopheide (Hrsg.): Lasermethoden in der Strömungsmesstechnik. 22. Fachtagung, 9.–11. September 2014, Karlsruhe; (Tagungsband). Karlsruhe, Dt. Ges. für Laser-Anemometrie GALA e.V., ISBN 978-3-9816764-0-2, S. 36.1–36.5 (Online).
  • M. Rauhe: Salvinia-Effekt Gute Luft unter Wasser. In: LOOKIT. Nr. 4, 2010, S. 26–28.

Read other articles:

Fresko Santa Klara dan para biarawati Ordo, Kapel San Damiano, Assisi Klara yang Fakir secara resmi Ordo St. Klara (bahasa Latin: Ordo sanctae Clarae) – awalnya disebut sebagai Ordo Wanita Fakir, dan kemudian Klarisa, Minoresses, Ordo Fransiskan Klaris, dan Ordo Kedua Santo Fransiskus – merupakan anggota Tarekat religius tertutup dari para biarawati di Gereja Katolik. Klara yang Fakir adalah Ordo Fransiskan kedua yang didirikan. Didirikan oleh Santa Klara dari Assisi dan Fransiskus da...

 

Presiden Republik AzerbaijanLambang Presiden Republik AzerbaijanPetahanaIlham Heydar ogly Aliyevsejak 31 Oktober 2003KediamanBakuMasa jabatan5 tahun, sesudahnya dapat dipilih kembaliDibentuk28 Mei 1918Pejabat pertamaMemmed Emin Aga ogly ResulzadeSitus webwww.president.az Azerbaijan Artikel ini adalah bagian dari seri Politik dan KetatanegaraanRepublik Azerbaijan Konstitusi Presiden: Ilham Aliyev Wakil Presiden: Mehriban Aliyeva Kepresidenan Perdana Menteri: Artur Rasizade Kabinet Menteri...

 

Men's basketball team of Temple University Temple Owls 2023–24 Temple Owls men's basketball team UniversityTemple UniversityAll-time record1,994–1,155 (.633)Head coachAdam Fisher (1st season)ConferenceThe AmericanLocationPhiladelphia, PennsylvaniaArenaLiacouras Center (Capacity: 10,206)NicknameOwlsColorsCherry and white[1]   Uniforms Home Away Alternate Pre-tournament Premo-Porretta champions1938Pre-tournament Helms champions1938NCAA tournament Final Four1...

Gas

Partikel fase gas (atom, molekul, atau ion) bergerak bebas tanpa adanya medan listrik. Gas (serapan dari bahasa Belanda gas) adalah salah satu dari empat wujud dasar materi (lainnya adalah padat, cairan, dan plasma). Gas murni dapat tersusun dari atom (misalnya gas mulia seperti neon), molekul elemen yang tersusun dari satu jenis atom (misalnya oksigen), atau molekul senyawa yang tersusun dari berbagai macam atom (misalnya karbon dioksida). Campuran gas akan mengandung beragam gas mu...

 

Escape at DannemoraGenreDramaThrillerPembuatBrett JohnsonMichael TolkinSutradaraBen StillerPemeran Benicio del Toro Patricia Arquette Paul Dano Bonnie Hunt Eric Lange David Morse Penata musikEdward ShearmurNegara asalAmerika SerikatBahasa asliInggrisJmlh. episode7 (daftar episode)ProduksiProduser eksekutif Ben Stiller Brett Johnson Michael Tolkin Bryan Zuriff Michael De Luca Nicky Weinstock Bill Carraro Durasi51–98 menitRumah produksiMichael De Luca ProductionsRed Hour ProductionsRil...

 

Pseudonym used by poets/artists in Wales, Cornwall or Brittany A bardic name (Welsh: enw barddol, Cornish: hanow bardhek) is a pseudonym used in Wales, Cornwall, or Brittany by poets and other artists, especially those involved in the eisteddfod movement. The Welsh term bardd (poet) originally referred to the Welsh poets of the Middle Ages, who might be itinerant or attached to a noble household. Some of these medieval poets were known by a pseudonym, for example Cynddelw Brydydd Mawr (Cyndde...

Nicolò Casale Nazionalità  Italia Altezza 194 cm Peso 84 kg Calcio Ruolo Difensore Squadra  Lazio CarrieraGiovanili  VeronaSquadre di club1 2017-2018→  Perugia1 (0)2018→  Prato15 (0)2018-2019→  Südtirol34 (0)2019-2020→  Venezia20 (0)2020-2021→  Empoli24 (1)2021-2022 Verona36 (0)2022- Lazio48 (1)Nazionale 2016-2017 Italia U-192 (0)2020 Italia U-212 (0) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di c...

 

周處除三害The Pig, The Snake and The Pigeon正式版海報基本资料导演黃精甫监制李烈黃江豐動作指導洪昰顥编剧黃精甫主演阮經天袁富華陳以文王淨李李仁謝瓊煖配乐盧律銘林孝親林思妤保卜摄影王金城剪辑黃精甫林雍益制片商一種態度電影股份有限公司片长134分鐘产地 臺灣语言國語粵語台語上映及发行上映日期 2023年10月6日 (2023-10-06)(台灣) 2023年11月2日 (2023-11-02)(香�...

 

الدوري الإنجليزي الدرجة الثانية 2014–15 تفاصيل الموسم الدوري الإنجليزي لكرة القدم 2014–2015  النسخة 57  البلد المملكة المتحدة  التاريخ بداية:9 أغسطس 2014  نهاية:23 مايو 2015  المنظم دوري كرة القدم الإنجليزية  البطل نادي بيرتن ألبيون  مباريات ملعوبة 552   عدد المشارك...

أداد نيراري الثالث معلومات شخصية تاريخ الميلاد القرن 9 ق.م تاريخ الوفاة -783 مواطنة آشور  الأولاد آشور دان الثالثآشور نيراري الخامسشلمنصر الرابعتغلث فلاسر الثالث  الأب شمشي أدد الخامس  الأم شامورامات  مناصب ملك آشور   في المنصب811 ق.م  – 783 ق.م  شمشي أدد الخام�...

 

Transform in numerical harmonic analysis An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is high-pass filtered, yielding the three large images, each describing local changes in brightness (details) in the original image. It is then low-pass filtered and downscaled, yielding an approximation image; this image is high-pass filtered to produce the three smaller detail images, and low-pass filtered to produce the final approximation image in the upper...

 

Not to be confused with Pascua. Flowers in the State of Florida Pascua Florida (pronounced [ˈpaskwa floˈɾiða]) is a Spanish term that means flowery festival or feast of flowers and is an annual celebration of Juan Ponce de León's arrival in what is now the state of Florida.[1][2] While the holiday is normally celebrated on April 2, it can fall on any date between the latter parts of March and the first week of April, depending on the day of the week April 2 falls ...

Flow of gas ejected from the upper atmosphere of a star This article is about gas ejected from the atmosphere of stars. For other uses, see Stellar wind (disambiguation). This image shows the wind from the star LL Orionis generating a bow shock (the bright arc) as it collides with material in the surrounding Orion Nebula. A stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collim...

 

U.S. manufacturing company Sleep Number CorporationA Sleep Number store in Miamisburg, OhioFormerlySelect Comfort (1987-2017)Company typePublicTraded asNasdaq: SNBRIndustryRetailFounded1987 (37 years ago) (1987)Founders Robert Bob Walker JoAnn Walker HeadquartersMinneapolis, Minnesota, U.S.Number of locations579 (Dec. 2018)Area servedUnited StatesKey peopleShelly Ibach (CEO)ProductsAdjustable mattresses and beddingBrandsSmart BedRevenue $1.856 billion (2021)Operat...

 

Place in Central Region, UgandaNajjanankumbiNajjanankumbiMap of Kampala showing the location of NajjanankumbiCoordinates: 00°16′20″N 32°34′30″E / 0.27222°N 32.57500°E / 0.27222; 32.57500Country UgandaRegionCentral RegionDistrictKampala Capital City Authority DivisionLubaga Division Elevation1,240 m (4,070 ft)Time zoneUTC+3 (EAT) Najjanankumbi is an area in the Lubaga Division of Uganda, on the southern edge of the city of Kampala. Location Na...

Australian music festival This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Soundwave Australian music festival – news · newspapers · books · scholar · JSTOR (December 2015) (Learn how and when to remove this message) SoundwaveAFI playing on the main stage at Soundwave Perth 2010GenreHeavy metalmetalcorea...

 

Place in Florida listed on National Register of Historic Places United States historic placeCrystal River Indian MoundsU.S. National Register of Historic PlacesU.S. National Historic Landmark Temple moundShow map of FloridaShow map of the United StatesLocationCrystal River, FloridaCoordinates28°54′33.3″N 82°37′42.81″W / 28.909250°N 82.6285583°W / 28.909250; -82.6285583Area61 acres (250,000 m2)Visitation21,000NRHP reference No.70000178[1&#...

 

Overview of the events of 1667 in science List of years in science (table) … 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 … Art Archaeology Architecture Literature Music Philosophy Science +... 1667 in science 16661668 Fields Archaeology Technology Sustainable energy research Transportation technology Social sciences Psychology Governance and policy studies Paleontology Dinosaurs' extinction Extraterrestrial environment Terrestr...

1967 single by Bobbie GentryI Saw an Angel DieSingle by Bobbie Gentryfrom the album Ode to Billie Joe B-sidePapa, Woncha Let Me Go to Town with YouReleasedSeptember 11, 1967Recorded1967StudioWhitney Recording (Glendale, California)Capitol (Hollywood)[1]GenreCountryLength2:56LabelCapitolSongwriter(s)Bobbie GentryProducer(s)Kelly GordonBobbie Gentry singles chronology Ode to Billie Joe (1967) I Saw an Angel Die (1967) Mississippi Delta (1967) I Saw an Angel Die is a song written and per...

 

日本 > 関東地方 > 埼玉県 > 北葛飾郡 この項目に含まれる文字「葛」は、オペレーティングシステムやブラウザなどの環境により表示が異なります。 「葛」の文字は公式の表記「」と異なる可能性があります。 埼玉県北葛飾郡の範囲(1.杉戸町 2.松伏町 薄緑・水色:後に他郡から編入した区域) 北葛飾郡(きたかつしかぐん)は、埼玉県の郡。 人口70,...