Row equivalence

In linear algebra, two matrices are row equivalent if one can be changed to the other by a sequence of elementary row operations. Alternatively, two m × n matrices are row equivalent if and only if they have the same row space. The concept is most commonly applied to matrices that represent systems of linear equations, in which case two matrices of the same size are row equivalent if and only if the corresponding homogeneous systems have the same set of solutions, or equivalently the matrices have the same null space.

Because elementary row operations are reversible, row equivalence is an equivalence relation. It is commonly denoted by a tilde (~).[1]

There is a similar notion of column equivalence, defined by elementary column operations; two matrices are column equivalent if and only if their transpose matrices are row equivalent. Two rectangular matrices that can be converted into one another allowing both elementary row and column operations are called simply equivalent.

Elementary row operations

An elementary row operation is any one of the following moves:

  1. Swap: Swap two rows of a matrix.
  2. Scale: Multiply a row of a matrix by a nonzero constant.
  3. Pivot: Add a multiple of one row of a matrix to another row.

Two matrices A and B are row equivalent if it is possible to transform A into B by a sequence of elementary row operations.

Row space

The row space of a matrix is the set of all possible linear combinations of its row vectors. If the rows of the matrix represent a system of linear equations, then the row space consists of all linear equations that can be deduced algebraically from those in the system. Two m × n matrices are row equivalent if and only if they have the same row space.

For example, the matrices

are row equivalent, the row space being all vectors of the form . The corresponding systems of homogeneous equations convey the same information:

In particular, both of these systems imply every equation of the form

Equivalence of the definitions

The fact that two matrices are row equivalent if and only if they have the same row space is an important theorem in linear algebra. The proof is based on the following observations:

  1. Elementary row operations do not affect the row space of a matrix. In particular, any two row equivalent matrices have the same row space.
  2. Any matrix can be reduced by elementary row operations to a matrix in reduced row echelon form.
  3. Two matrices in reduced row echelon form have the same row space if and only if they are equal.

This line of reasoning also proves that every matrix is row equivalent to a unique matrix with reduced row echelon form.

Additional properties

  • Because the null space of a matrix is the orthogonal complement of the row space, two matrices are row equivalent if and only if they have the same null space.
  • The rank of a matrix is equal to the dimension of the row space, so row equivalent matrices must have the same rank. This is equal to the number of pivots in the reduced row echelon form.
  • A matrix is invertible if and only if it is row equivalent to the identity matrix.
  • Matrices A and B are row equivalent if and only if there exists an invertible matrix P such that A=PB.[2]

See also

References

  1. ^ Lay 2005, p. 21, Example 4
  2. ^ Roman 2008, p. 9, Example 0.3
  • Axler, Sheldon Jay (1997), Linear Algebra Done Right (2nd ed.), Springer-Verlag, ISBN 0-387-98259-0
  • Lay, David C. (August 22, 2005), Linear Algebra and Its Applications (3rd ed.), Addison Wesley, ISBN 978-0-321-28713-7
  • Meyer, Carl D. (February 15, 2001), Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), ISBN 978-0-89871-454-8, archived from the original on March 1, 2001
  • Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Brooks/Cole, ISBN 0-534-99845-3
  • Anton, Howard (2005), Elementary Linear Algebra (Applications Version) (9th ed.), Wiley International
  • Leon, Steven J. (2006), Linear Algebra With Applications (7th ed.), Pearson Prentice Hall
  • Roman, Steven (2008). Advanced Linear Algebra. Graduate Texts in Mathematics. Vol. 135 (3rd ed.). Springer Science+Business Media, LLC. ISBN 978-0-387-72828-5.

Read other articles:

Rani AgustinaRani Agustina AngrainiLahirRani Agustina Angraini24 Agustus 1993 (umur 30) Jakarta, IndonesiaNama lainAgustina Angraini, Rani Agustina, Rani AgustinePekerjaanArtis, modelTahun aktif2008 - sekarang Rani Agustina Angraini (lahir 24 Agustus 1993) merupakan seorang artis berkebangsaan Indonesia. Karier Rani Agustine dikenal luas oleh masyarakat sejak membintangi sinetron Kepompong dengan karakter antagonisnya. Selain itu, Rani juga mendapatkan peran sebagai Eris di fil...

An ash-dominant forest in decline from emerald ash borer damage Species which are not native to a forest ecosystem can act as an agent of disturbance, changing forest dynamics as they invade and spread. Invasive insects and pathogens (diseases) are introduced to the United States through international trade, and spread through means of natural and human-dispersal. Invasive insects and pathogens are a serious threat to many forests in the United States and have decimated populations of several...

Дірдорф Dierdorf —  місто  — Вид Дірдорф Герб Координати: 50°32′56″ пн. ш. 7°39′34″ сх. д. / 50.54889° пн. ш. 7.65944° сх. д. / 50.54889; 7.65944 Країна  Німеччина Земля Рейнланд-Пфальц Район Нойвід Об'єднання громад Дірдорф Площа  - Повна 31,90 

Hielo panqueque Hielo panqueque en el Mar de Ross Hielo panqueque en la parte occidental del Mar Báltico El hielo panqueque es una forma de banquisa que consiste en trozos redondos de hielo con diámetros que van desde los 30 cm a 3 m, dependiendo de las condiciones locales que afectan la formación del hielo. Puede tener un grosor de hasta 10 cm.[1]​ El hielo panqueque presenta bordes elevados que se forman al amontonarse el hielo frazil, hielo aguanieve, etc. por los bordes de los hi...

Clements Plaats in de Verenigde Staten Vlag van Verenigde Staten Locatie van Clements in Minnesota Locatie van Minnesota in de VS Situering County Redwood County Type plaats City Staat Minnesota Coördinaten 44° 23′ NB, 95° 3′ WL Algemeen Oppervlakte 1,0 km² - land 1 km² - water 0,0 km² Inwoners (2006) 173 Hoogte 320 m Overig ZIP-code(s) 56224 FIPS-code 11836 Portaal    Verenigde Staten Clements is een plaats (city) in de Amerikaanse staat Minnesota, en valt bestuur...

فونتوليزوماب ضد وحيد النسيلة نوع Whole antibody الهدف إنترفيرون غاما اعتبارات علاجية معرّفات CAS 326859-36-3 N ك ع ت None درغ بنك 05111  كيم سبايدر NA المكون الفريد 6J92H2439Z Y كيوتو D04242 Y بيانات كيميائية الكتلة الجزيئية ca. 150 وحدة كتل ذرية تعديل مصدري - تعديل   فونتوليزوماب هو جسم مض�...

BajrakitiyabhaYang Mulia Putri Maha Chakri Sirindhorn, Putri Bajrakitiyabha Narendira Debyawati, Putri Rajasarini SiribajraKelahiranPhra Chao Lanh Ther Phra Ong Chao Bajrakitiyabha07 Desember 1978 (umur 44)Bangkok, ThailandWangsaWangsa Mahidol Dinasti ChakriNama lengkapSomdet Phra Chao Luk Thoe Chao Fa Bajrakitiyabha Narendira Debyawati, Krommaluang Rajasarini Siribajra Maha WatcharathidaAyahRaja Rama XIbuSoamsawali, Putri SuddhanarinathaAgamaBuddha Keluarga Kerajaan Thailand YM Raja Ram...

Sports season2023 Big 12 Conference football seasonLeagueNCAA Division I FBS football seasonSportfootballDurationTBANumber of teams14TV partner(s)Fox Family (Fox, FS1), ESPN Family (ABC, ESPN, ESPN2, ESPN+, ESPNU, Big 12 Now, LHN)2024 NFL DraftChampionship GameChampionsTexas  Runners-upOklahoma StateFinals MVPQuinn Ewers, QB, TexasSeasons← 20222024 → 2023 Big 12 Conference football standings vte Conf Overall Team   W   L     W   L   No. 3 ...

Resolusi 711Dewan Keamanan PBBLokasi LithuaniaTanggal12 September 1991Sidang no.3.007KodeS/RES/711 (Dokumen)TopikPenambahan anggota baru PBB: LituaniaHasilDiadopsiKomposisi Dewan KeamananAnggota tetap Tiongkok Prancis Britania Raya Amerika Serikat Uni SovietAnggota tidak tetap Austria Belgia Pantai Gading Kuba Ekuador India Rumania Yaman Zaire Zimbabwe Resolusi Dewan Keamanan Perserikatan Bangsa-Bangsa 711, d...

Football clubBarnsley Women's Football ClubFull nameBarnsley Women's Football ClubNickname(s)The RedsFounded1982GroundOlympic Legacy Park, SheffieldCapacity1,000Chief ExecutiveStephen MaddockManagerLois DanielsLeagueFA Women's National League Division One North2022–23FA Women's National League Division One North, 4th of 12WebsiteClub website Barnsley Women's Football Club is an English Women's Football Club based in Barnsley, South Yorkshire, England. The club currently plays in the FA Wome...

Жан Юбер Вольтер, играющий в шахматы с отцом Адамом. Между 1770 и 1775 годами фр. Voltaire jouant aux échecs avec le père Adam Холст, масло. 53 × 44[1] см Государственный Эрмитаж, Санкт-Петербург, Российская Федерация (инв. ГЭ-6723) «Вольтер, играющий в шахматы с отцом Адамом» (фр. Vo...

British author, adventurer, and biologist Colin Skinner holding a year old kiwi Colin Skinner (born 1965) is a British author, adventurer and molecular biologist who is attempting to walk around the world. As of mid-2014, he has walked over 14,500 miles (23,300 km) and has crossed Great Britain, Iceland, United States and New Zealand.[1] He has used the walks to raise money and awareness for various causes, including conservation biology, people with disabilities, cancer relief, ...

Jalur kereta api Cibatu–CikajangStasiun Pasirjengkol, salah satu stasiun yang direaktivasi pada 2022.IkhtisarJenisJalur lintas cabangSistemJalur kereta api rel beratStatusBeroperasi (Cibatu–Garut)Tidak beroperasi (Garut–Cikajang)TerminusCibatuCikajangOperasiDibangun olehStaatsspoorwegenDibuka1889; 133 tahun lalu (1889) & 1930; 92 tahun lalu (1930)Ditutup1982; 40 tahun lalu (1982), segmen Garut–Cikajang 1983; 40 tahun lalu (1983), segmen Cibatu–GarutDibuka kem...

Canadian online video game and software development company Hyper Hippo Entertainment Ltd.TypePrivateIndustryVideo gamesFounded2012FoundersLance PriebePascale AudetteHeadquarters1650 Bertram StreetKelowna, British ColumbiaV1Y 2G4Key peopleLance Priebe(CEO & CCO)ProductsAdVenture CapitalistAdVenture CommunistAdVenture AgesVacation TycoonWild WarfareLeviathans OnlineNumber of employees108Websitehyperhippo.com Hyper Hippo Entertainment is a Canadian online video game and software development...

Este artigo carece de caixa informativa ou a usada não é a mais adequada. Foi sugerido que esta caixa fosse inserida.Foram assinalados vários problemas nesta página ou se(c)ção: Não tem fontes. Precisa ser formatada para o padrão wiki. Não tem imagens. Carece de contexto. Plano e Prospetto para os quarteis do Regimento de Artilharia do Reino do Algarve de que he Coronel Theodozio da Silva Reboxo O Regimento de Artilharia do Reino do Algarve foi uma unidade militar artilheira criada a...

Symbol or metaphor in several traditions Three crows in a tree Three crows are a symbol or metaphor in several traditions. Crows, and especially ravens, often feature in European legends or mythology as portents or harbingers of doom or death, because of their dark plumage, unnerving calls, and tendency to eat carrion. According to Druid tradition they're also believed to bring upon new changes (death to one phase of your life and the birth to another) English folklore A version of the three ...

Disk encryption software LUKS redirects here. For the American painter, see George Luks. The Linux Unified Key Setup (LUKS) is a disk encryption specification created by Clemens Fruhwirth in 2004 and originally intended for Linux. LUKS implements a platform-independent standard on-disk format for use in various tools. This facilitates compatibility and interoperability among different programs and operating systems, and assures that they all implement password management in a secure and docum...

1975 single by Van McCoy & the Soul City SymphonyThe HustleSingle by Van McCoy & the Soul City Symphonyfrom the album Disco Baby[1] B-sideHey Girl, Come and Get ItReleasedApril 18, 1975Recorded1975StudioMediasound (New York City)Genre Disco dance[2] Length3:29 (Single Version) 4:10 (Album Version)LabelAvco RecordsSongwriter(s)Van McCoyProducer(s)Hugo Peretti, Luigi Creatore The Hustle is a disco song by songwriter/arranger Van McCoy and the Soul City Symphony. It went ...

Part of a series onGenocide Issues List of genocides Genocides in history Effects on youth Denial Massacre Rape Incitement In relation to Colonialism / War Perpetrators, victims, and bystanders Prevention Psychology Recognition politics Risk factors Stages Types Anti-Indigenous Cultural Utilitarian Studies Outline Bibliography 18th and 19th century genocides Taíno Dzungar Circassian Black War Moriori California Putumayo Selk'nam Early 20th century genocides Herero and Nama Greek Diy...

American physician (1927–2010) Mildred Fay JeffersonBorn(1927-04-06)April 6, 1927Pittsburg, Texas, U.S.DiedOctober 15, 2010(2010-10-15) (aged 83)Cambridge, Massachusetts, U.S.EducationTexas College (BS)Tufts University (MS)Harvard University (MD)Political partyRepublican Mildred Fay Jefferson (April 6, 1927 – October 15, 2010)[1] was an American physician and anti-abortion political activist. The first black woman to graduate from Harvard Medical School, the first woman to gr...