In 2003, a collection of original research papers in discrete and computational geometry entitled Discrete and Computational Geometry: The Goodman–Pollack Festschrift was published as a tribute to Jacob E. Goodman and Richard Pollack on the occasion of their 2/3 × 100 birthdays.[21]
^"Ricky Pollack", sent by Joseph S. B. Mitchell on behalf of the Computational Geometry steering committee to the compgeom-announce mailing list, September 19, 2018
^Erdős, Paul; Pach, János; Pollack, Richard; Tuza, Zsolt (1989), "Radius, diameter, and minimum degree", Journal of Combinatorial Theory, Series B, 47: 73–79, doi:10.1016/0095-8956(89)90066-x
^ abGoodman, Jacob E.; Pollack, Richard (1986), "There are asymptotically far fewer polytopes than we thought", Bulletin of the American Mathematical Society, 46: 127–129, doi:10.1090/s0273-0979-1986-15415-7
^Goodman, Jacob E.; Pollack, Richard (1984), "Semispaces of configurations, cell complexes of arrangements", Journal of Combinatorial Theory, Series A, 37 (3): 257–293, doi:10.1016/0097-3165(84)90050-5
^ ab
Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise (1996), "On the number of cells defined by a family of polynomials on a variety", Mathematika, 43: 120–126, doi:10.1112/s0025579300011621
^ ab
Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise (1996), "On the combinatorial and algebraic complexity of quantifier elimination", Journal of the ACM, 43 (6): 1002–1045, CiteSeerX10.1.1.49.3736, doi:10.1145/235809.235813, S2CID9536962
^ ab
Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise (2000), "Computing roadmaps of semi-algebraic sets on a variety", Journal of the American Mathematical Society, 13: 55–82, doi:10.1090/S0894-0347-99-00311-2
^ ab
Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise (2009), "An asymptotically tight bound on the number of semi-algebraically connected components of realizable sign conditions", Combinatorica, 29 (5): 523–546, arXiv:math/0603256, doi:10.1007/s00493-009-2357-x
^Goodman, Jacob E.; Pollack, Richard; Sturmfels, Bernd (1990), "The intrinsic spread of a configuration in R^d", Journal of the American Mathematical Society, 3 (3): 639–651, doi:10.1090/s0894-0347-1990-1046181-2
^Cappell, Sylvain; Goodman, Jacob E.; Pach, János; Pollack, Richard; Sharir, Micha; Wenger, Rephael (1994), "Common tangents and common transversals", Advances in Mathematics, 106 (2): 198–215, doi:10.1006/aima.1994.1056
^Basu, Saugata; Pollack, Richard; Roy, Marie-Françoise (2003), Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag
Pollack, Richard (1962), Some Tauberian theorems in elementary prime number theory (Ph.D. Thesis), New York University.
Goodman, Jacob E.; Pach, János; Pollack, Richard, eds. (2008), Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemporary Mathematics, vol. 453, American Mathematical Society.