Andersen, an author of over 200 scientific publications, is a member of the National Academy of Sciences and the Institute of Medicine of the National Academies as well as a fellow of the American Academy of Arts and Sciences, AAAS and the Neuroscience Research Program in La Jolla, California, and he holds several patents in the area of biotechnology. He has served as principal or co-investigator on dozens of grants, raising millions of dollars for basic and applied research in the visual neurosciences. Andersen has served as the director of Caltech's Sloan-Schwartz Center for Theoretical Neurobiology and MIT's McDonnell-Pew Center for Cognitive Neuroscience as well as serving on numerous advisory and editorial boards. He has delivered numerous named lectureships and has served as a visiting professor at the Collège de France.
Early work centered on the discovery and elucidation of cortical gain fields, a general rule of multiplicative computation used by many areas of the cortex.[3][4] Andersen and Zipser of UCSD developed one of the first neural network models of cortical function, which generated a mathematical basis for testing hypotheses based on laboratory findings.[5] His research established that the posterior parietal cortex (PPC) is involved in forming movement intentions—the early and abstract plans for movement.[6] Previously this part of the brain was thought only to function for spatial awareness and attention. His laboratory discovered the lateral intraparietal area (LIP) in the PPC and established its role in eye movements.[7] He also discovered the parietal reach region, an area involved in forming early reach plans.[8] His lab has also made a number of discoveries related to visual motion perception. He established that the middle temporal area processes the perception of form from motion.[9] He found that the perception of the direction of heading, important for navigation, is computed in the brain using both visual stimuli and eye movement signals.[10] His lab has also determined how eye position and limb position signals are combined for eye-hand coordination.[11]
In recent years he has extended his research to translational studies. His group has established that the intention signals from the PPC can be used as control signals for neural prosthetics.[12] Neural prosthetics can assist paralyzed patients by recording their brain signals, interpreting them, and then allowing them to use these processed signals to control external, assistive devices such as robot limbs, computers or wheelchairs simply using by thinking about it. Another new direction the Andersen group is pursuing is the use of electrical stimulation for brain repair.
^Gnadt, J. W.; Andersen, R. A. (1988-03-01). "Memory related motor planning activity in posterior parietal cortex of macaque". Experimental Brain Research. 70 (1): 216–220. doi:10.1007/BF00271862. ISSN1432-1106. PMID3402565. S2CID8411726.