In chemistry, redistribution usually refers to the exchange of anionic ligands bonded to metal and metalloid centers. The conversion does not involve redox, in contrast to disproportionation reactions. Some useful redistribution reactions are conducted at higher temperatures; upon cooling the mixture, the product mixture is kinetically frozen and the individual products can be separated. In cases where redistribution is rapid at mild temperatures, the reaction is less useful synthetically but still important mechanistically.
Examples
Redistribution reactions are exhibited by methylboranes. Thus monomethyldiborane rapidly converts at room temperature to diborane and trimethylborane:[1]
In another example, tetramethylsilane is an undesirable product of the industrially important direct process, but it can be converted (recycled) into more useful products by redistribution with silicon tetrachloride:
SiMe4 + SiCl4 → 2 SiMe2Cl2
In organotin chemistry, the mixed alkyl tin chlorides are produced by redistribution, a reaction called the Kocheshkov comproportionation:[4]
3 SnBu4 + SnCl4 → 4 SnBu3Cl
Many metal halides undergo redistribution reactions, usually to afford nearly statistical mixtures of products. For example, titanium tetrachloride and titanium tetrabromide redistribute their halide ligands, one of many reactions in this conversion is shown:[5]
TiCl4 + TiBr4 → 2 TiBr2Cl2
References
^Bell, R. P.; Emeléus, H. J. (1948). "The Boron Hydrides and Related Compounds". Quarterly Reviews, Chemical Society. 2 (2): 132. doi:10.1039/QR9480200132.. The authors refer to redistributions as "disproportionations".
^Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN0-7506-3365-4.
^Many mixed organo-chloro derivatives of many metalloids are produced in this manner.
In one example, Köster, R.; Binger, P. (2007). Chlorodiethylborane and Chlorodiphenylborane" 2007;. Inorganic Syntheses. Vol. 15. pp. 149–153. doi:10.1002/9780470132463.ch33. ISBN9780470132463.