Reaction rate constant

In chemical kinetics, a reaction rate constant or reaction rate coefficient () is a proportionality constant which quantifies the rate and direction of a chemical reaction by relating it with the concentration of reactants.[1]

For a reaction between reactants A and B to form a product C,

a A + b B → c C

where

A and B are reactants
C is a product
a, b, and c are stoichiometric coefficients,

the reaction rate is often found to have the form:

Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the solution. (For a reaction taking place at a boundary, one would use moles of A or B per unit area instead.)

The exponents m and n are called partial orders of reaction and are not generally equal to the stoichiometric coefficients a and b. Instead they depend on the reaction mechanism and can be determined experimentally.

Sum of m and n, that is, (m + n) is called the overall order of reaction.

Elementary steps

For an elementary step, there is a relationship between stoichiometry and rate law, as determined by the law of mass action. Almost all elementary steps are either unimolecular or bimolecular. For a unimolecular step

A → P

the reaction rate is described by , where is a unimolecular rate constant. Since a reaction requires a change in molecular geometry, unimolecular rate constants cannot be larger than the frequency of a molecular vibration. Thus, in general, a unimolecular rate constant has an upper limit of k1 ≤ ~1013 s−1.

For a bimolecular step

A + B → P

the reaction rate is described by , where is a bimolecular rate constant. Bimolecular rate constants have an upper limit that is determined by how frequently molecules can collide, and the fastest such processes are limited by diffusion. Thus, in general, a bimolecular rate constant has an upper limit of k2 ≤ ~1010 M−1s−1.

For a termolecular step

A + B + C → P

the reaction rate is described by , where is a termolecular rate constant.

There are few examples of elementary steps that are termolecular or higher order, due to the low probability of three or more molecules colliding in their reactive conformations and in the right orientation relative to each other to reach a particular transition state.[2] There are, however, some termolecular examples in the gas phase. Most involve the recombination of two atoms or small radicals or molecules in the presence of an inert third body which carries off excess energy, such as O + O
2
+ N
2
O
3
+ N
2
. One well-established example is the termolecular step 2 I + H
2
→ 2 HI in the hydrogen-iodine reaction.[3][4][5] In cases where a termolecular step might plausibly be proposed, one of the reactants is generally present in high concentration (e.g., as a solvent or diluent gas).[6]

Relationship to other parameters

For a first-order reaction (including a unimolecular one-step process), there is a direct relationship between the unimolecular rate constant and the half-life of the reaction: . Transition state theory gives a relationship between the rate constant and the Gibbs free energy of activation , a quantity that can be regarded as the free energy change needed to reach the transition state. In particular, this energy barrier incorporates both enthalpic () and entropic () changes that need to be achieved for the reaction to take place:[7][8] The result from transition state theory is , where h is the Planck constant and R the molar gas constant. As useful rules of thumb, a first-order reaction with a rate constant of 10−4 s−1 will have a half-life (t1/2) of approximately 2 hours. For a one-step process taking place at room temperature, the corresponding Gibbs free energy of activation (ΔG) is approximately 23 kcal/mol.

Dependence on temperature

The Arrhenius equation is an elementary treatment that gives the quantitative basis of the relationship between the activation energy and the reaction rate at which a reaction proceeds. The rate constant as a function of thermodynamic temperature is then given by:

The reaction rate is given by:

where Ea is the activation energy, and R is the gas constant, and m and n are experimentally determined partial orders in [A] and [B], respectively. Since at temperature T the molecules have energies according to a Boltzmann distribution, one can expect the proportion of collisions with energy greater than Ea to vary with eEaRT. The constant of proportionality A is the pre-exponential factor, or frequency factor (not to be confused here with the reactant A) takes into consideration the frequency at which reactant molecules are colliding and the likelihood that a collision leads to a successful reaction. Here, A has the same dimensions as an (m + n)-order rate constant (see Units below).

Another popular model that is derived using more sophisticated statistical mechanical considerations is the Eyring equation from transition state theory:

where ΔG is the free energy of activation, a parameter that incorporates both the enthalpy and entropy change needed to reach the transition state. The temperature dependence of ΔG is used to compute these parameters, the enthalpy of activation ΔH and the entropy of activation ΔS, based on the defining formula ΔG = ΔHTΔS. In effect, the free energy of activation takes into account both the activation energy and the likelihood of successful collision, while the factor kBT/h gives the frequency of molecular collision.

The factor (c)1-M ensures the dimensional correctness of the rate constant when the transition state in question is bimolecular or higher. Here, c is the standard concentration, generally chosen based on the unit of concentration used (usually c = 1 mol L−1 = 1 M), and M is the molecularity of the transition state. Lastly, κ, usually set to unity, is known as the transmission coefficient, a parameter which essentially serves as a "fudge factor" for transition state theory.

The biggest difference between the two theories is that Arrhenius theory attempts to model the reaction (single- or multi-step) as a whole, while transition state theory models the individual elementary steps involved. Thus, they are not directly comparable, unless the reaction in question involves only a single elementary step.

Finally, in the past, collision theory, in which reactants are viewed as hard spheres with a particular cross-section, provided yet another common way to rationalize and model the temperature dependence of the rate constant, although this approach has gradually fallen into disuse. The equation for the rate constant is similar in functional form to both the Arrhenius and Eyring equations:

where P is the steric (or probability) factor and Z is the collision frequency, and ΔE is energy input required to overcome the activation barrier. Of note, , making the temperature dependence of k different from both the Arrhenius and Eyring models.

Comparison of models

All three theories model the temperature dependence of k using an equation of the form

for some constant C, where α = 0, 12, and 1 give Arrhenius theory, collision theory, and transition state theory, respectively, although the imprecise notion of ΔE, the energy needed to overcome the activation barrier, has a slightly different meaning in each theory. In practice, experimental data does not generally allow a determination to be made as to which is "correct" in terms of best fit. Hence, all three are conceptual frameworks that make numerous assumptions, both realistic and unrealistic, in their derivations. As a result, they are capable of providing different insights into a system.[9]

Units

The units of the rate constant depend on the overall order of reaction.[10]

If concentration is measured in units of mol·L−1 (sometimes abbreviated as M), then

  • For order (m + n), the rate constant has units of mol1−(m+n)·L(m+n)−1·s−1 (or M1−(m+n)·s−1)
  • For order zero, the rate constant has units of mol·L−1·s−1 (or M·s−1)
  • For order one, the rate constant has units of s−1
  • For order two, the rate constant has units of L·mol−1·s−1 (or M−1·s−1)
  • For order three, the rate constant has units of L2·mol−2·s−1 (or M−2·s−1)
  • For order four, the rate constant has units of L3·mol−3·s−1 (or M−3·s−1)

Plasma and gases

Calculation of rate constants of the processes of generation and relaxation of electronically and vibrationally excited particles are of significant importance. It is used, for example, in the computer simulation of processes in plasma chemistry or microelectronics. First-principle based models should be used for such calculation. It can be done with the help of computer simulation software.

Rate constant calculations

Rate constant can be calculated for elementary reactions by molecular dynamics simulations. One possible approach is to calculate the mean residence time of the molecule in the reactant state. Although this is feasible for small systems with short residence times, this approach is not widely applicable as reactions are often rare events on molecular scale. One simple approach to overcome this problem is Divided Saddle Theory.[11] Such other methods as the Bennett Chandler procedure,[12][13] and Milestoning[14] have also been developed for rate constant calculations.

Divided saddle theory

The theory is based on the assumption that the reaction can be described by a reaction coordinate, and that we can apply Boltzmann distribution at least in the reactant state. A new, especially reactive segment of the reactant, called the saddle domain, is introduced, and the rate constant is factored:

where αSD
RS
is the conversion factor between the reactant state and saddle domain, while kSD is the rate constant from the saddle domain. The first can be simply calculated from the free energy surface, the latter is easily accessible from short molecular dynamics simulations [11]

See also

References

  1. ^ "Chemical Kinetics Notes". www.chem.arizona.edu. Retrieved 5 May 2018.
  2. ^ Lowry, Thomas H. (1987). Mechanism and theory in organic chemistry. Richardson, Kathleen Schueller (3rd ed.). New York: Harper & Row. ISBN 978-0060440848. OCLC 14214254.
  3. ^ Moore, John W.; Pearson, Ralph G. (1981). Kinetics and Mechanism (3rd ed.). John Wiley. pp. 226–7. ISBN 978-0-471-03558-9.
  4. ^ The reactions of nitric oxide with the diatomic molecules Cl
    2
    , Br
    2
    or O
    2
    (e.g., 2 NO + Cl
    2
    → 2 NOCl, etc.) have also been suggested as examples of termolecular elementary processes. However, other authors favor a two-step process, each of which is bimolecular: (NO + Cl
    2
    NOCl
    2
    , NOCl
    2
    + NO → 2 NOCl). See: Compton, R.G.; Bamford, C. H.; Tipper, C.F.H., eds. (2014) [1972]. "5. Reactions of the Oxides of Nitrogen §5.5 Reactions with Chlorine". Reactions of Non-metallic Inorganic Compounds. Comprehensive Chemical Kinetics. Vol. 6. Elsevier. p. 174. ISBN 978-0-08-086801-1.
  5. ^ Sullivan, John H. (1967-01-01). "Mechanism of the Bimolecular Hydrogen—Iodine Reaction". The Journal of Chemical Physics. 46 (1): 73–78. Bibcode:1967JChPh..46...73S. doi:10.1063/1.1840433. ISSN 0021-9606.
  6. ^ Kotz, John C. (2009). Chemistry & chemical reactivity. Treichel, Paul., Townsend, John R. (7th ed.). Belmont, Calif.: Thomson Brooks/ Cole. p. 703. ISBN 9780495387039. OCLC 220756597.
  7. ^ Laidler, Keith J. (1987). Chemical Kinetics (3rd ed.). Harper & Row. p. 113. ISBN 0-06-043862-2.
  8. ^ Steinfeld, Jeffrey I.; Francisco, Joseph S.; Hase, William L. (1999). Chemical Kinetics and Dynamics (2nd ed.). Prentice Hall. p. 301. ISBN 0-13-737123-3.
  9. ^ Carpenter, Barry K. (1984). Determination of organic reaction mechanisms. New York: Wiley. ISBN 978-0471893691. OCLC 9894996.
  10. ^ Blauch, David. "Differential Rate Laws". Chemical Kinetics.
  11. ^ a b Daru, János; Stirling, András (2014). "Divided Saddle Theory: A New Idea for Rate Constant Calculation" (PDF). J. Chem. Theory Comput. 10 (3): 1121–1127. doi:10.1021/ct400970y. PMID 26580187.
  12. ^ Chandler, David (1978). "Statistical mechanics of isomerization dynamics in liquids and the transition state approximation". J. Chem. Phys. 68 (6): 2959. Bibcode:1978JChPh..68.2959C. doi:10.1063/1.436049.
  13. ^ Bennett, C. H. (1977). Christofferson, R. (ed.). Algorithms for Chemical Computations, ACS Symposium Series No. 46. Washington, D.C.: American Chemical Society. ISBN 978-0-8412-0371-6.
  14. ^ West, Anthony M.A.; Elber, Ron; Shalloway, David (2007). "Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide". The Journal of Chemical Physics. 126 (14): 145104. Bibcode:2007JChPh.126n5104W. doi:10.1063/1.2716389. PMID 17444753.

Read other articles:

Estudiar en primavera Poster Estudiar en primaveraTítulo Spanish Teen Rally (inglés),Étudier au temps du printemps (francés)Ficha técnicaDirección Amparo FortunyProducción Amparo Fortuny,Mikel Iribarren MorrásGuion Amparo FortunyMúsica Klaus & Kinski (Ley y moral)Carl Davis (Intolerance)Joseph Carl Breil (Intolerance)Sonido Emilio García Rivas (sound mixer),Sergio González (editor de sonido)Fotografía Carlos Beltrán LázaroMontaje Mikel Iribarren Morrás Ver todos los crédit...

 

 

No debe confundirse con el presentador español Jesús Vázquez. Jesús Vásquez Información personalNombre de nacimiento Jesús Vásquez VásquezNacimiento 20 de diciembre de 1920Lima, PerúFallecimiento 3 de abril de 2010(89 años)Lima, PerúSepultura Cementerio Mapfre de HuachipaNacionalidad PeruanaInformación profesionalOcupación CantanteAños activa 1938 - 2005Seudónimo La Reina y Señora de la Canción CriollaInstrumento Voz [editar datos en Wikidata] Jesús Vásquez ...

 

 

Centre nationald'enseignement à distanceHistoireFondation 1939CadreSigle CNEDType Établissement public à caractère administratif placé sous la tutelle du ministère chargé de l'Éducation nationaleForme juridique Autre établissement public national d'enseignementDomaine d'activité Autres enseignementsSiège Technopole du Futuroscope, Chasseneuil-du-Poitou, Vienne FrancePays  FranceLangue FrançaisOrganisationEffectif 2 200Directeur général Jean-Noël Tronc (depuis 2022)Site web...

Pakistani atrocities during the 1971 Bangladesh genocide This article's factual accuracy is disputed. Relevant discussion may be found on Talk:Rape during the Bangladesh Liberation War/GA2. Please help to ensure that disputed statements are reliably sourced. (January 2024) (Learn how and when to remove this template message) Part of a series onPersecution of Bengali HindusPart of Bengali Hindu history Discrimination Anti-Bengali sentiment in India Malaun Vested Property Act Bongal Dkhar D vot...

 

 

العلاقات السودانية المالية السودان مالي   السودان   مالي تعديل مصدري - تعديل   العلاقات السودانية المالية هي العلاقات الثنائية التي تجمع بين السودان ومالي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة السودا�...

 

 

Isotope of beryllium Beryllium-10, 10BeGeneralSymbol10BeNamesberyllium-10, 10Be, Be-10Protons (Z)4Neutrons (N)6Nuclide dataNatural abundancetraceHalf-life (t1/2)1.39×106 yearsSpin0+Binding energy64976.3±0.08 keVDecay modesDecay modeDecay energy (MeV)β−0.5560[1][2]Isotopes of beryllium Complete table of nuclides Beryllium-10 (10Be) is a radioactive isotope of beryllium. It is formed in the Earth's atmosphere mainly by cosmic ray spallation of nitrogen and oxygen....

Toulon Façade du bâtiment voyageurs. Localisation Pays France Commune Toulon Quartier Centre-ville Adresse Place de l'Europe83000 Toulon Coordonnées géographiques 43° 07′ 43″ nord, 5° 55′ 47″ est Gestion et exploitation Propriétaire SNCF Exploitant SNCF Code UIC 87755009 Site Internet La gare de Toulon, sur le site officiel de SNCF Gares & Connexions Services TGV inOuiOuigoIntercités de nuitTER Provence-Alpes-Côte d'Azur Caractéristiques Li...

 

 

Cet article est une ébauche concernant un personnage de fiction et la Chine. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Zhuge JinBiographieNaissance 174Langyejun (d)Décès 241Royaume de WuPrénom social 子瑜Activité Homme politiquePère Zhuge Gui (en)Fratrie Zhuge Jun (en)Zhuge LiangEnfants Zhuge Qiao (en)Zhuge KeZhuge Rong (en)modifier - modifier le code - modifier Wikidata Zhuge Jin (174-241) est un ...

 

 

Artikel ini bukan mengenai New York City FC stadium. Stadion New YorkLokasiStadion New York New York Way Rotherham S60 1FJ[1]Transportasi umum Rotherham Central (0.4 mi)PemilikRotherham United F.C.OperatorRotherham United F.C.Kapasitas12,021PermukaanRumputKonstruksiMulai pembangunan16 Juni 2011DidirikanIzin perencanaan diberikan, 2010Dibuka19 Juli 2012Biaya£20 jutaArsitekS&P Architects dan 3E Consulting EngineersKontraktor umumGleeds dan GMI ConstructionPemakaiRotherham United F....

أرون وينتر (بالهولندية: Aron Winter)‏  معلومات شخصية الميلاد 1 مارس 1967 (العمر 57 سنة)باراماريبو الطول 1.76 م (5 قدم 9 1⁄2 بوصة) مركز اللعب لاعب وسط  الجنسية مملكة هولندا  معلومات النادي النادي الحالي سورينام مسيرة الشباب سنوات فريق 0000–1985 SV Lelystad 1985–1986 أكاديمية أيا�...

 

 

Mahkamah Agung KanadaSupreme Court of CanadaCour suprême du CanadaDidirikan8 April 1875; 149 tahun lalu (8 April 1875)YurisdiksiKanadaLokasiOttawa, OntarioKoordinat45°25'19.00N 75°42'20.00WCara penunjukkanPenunjukan yudisial di KanadaDisahkan olehConstitution Act, 1867 dan Supreme Court Act, 1875Masa jabatanWajib pensiun pada usia 75 tahunJumlah hakim9Situs webwww.scc-csc.caKetua Mahkamah Agung KanadaSaat iniRichard WagnerMulai menjabat18 December 2017Akhir jabatan ketua2 April 2032 M...

 

 

Hj. Nurbani YusufS.H.Nurbani pada tahun 1991LahirNurbani Yusuf Kantjasungkana(1939-12-25)25 Desember 1939Bengkulu, Hindia BelandaMeninggal22 Oktober 2015(2015-10-22) (umur 75)SingapuraKebangsaanIndonesiaAlmamaterUniversitas IndonesiaPekerjaanPengacaraAktrisModelSuami/istriKusumanegara ​ ​(m. 1968, died)​Anak2 Hj. Nurbani Yusuf Kantjasungkana, S.H. (25 Desember 1939 – 22 Oktober 2015)[1] adalah seorang pengacara, mantan a...

Albert William TruemanA. W. TruemanBornJanuary 17, 1902 (1902-01-17)Waverly, Pennsylvania[1]DiedJune 29, 1988 (1988-06-30) (aged 86)Toronto, Ontario, CanadaAlma materMount Allison University, Oxford UniversityOccupation(s)teacher, professor, cultural and university administratorKnown forNational Film Board of Canada, Canada Council, University of Manitoba, University of New Brunswick, University of Western Ontario, Carleton University Albert William Trueman, OC, FR...

 

 

Honorary position in the British parliament Father of the HouseIncumbentSir Peter Bottomleysince 13 December 2019House of Commons of the United KingdomMember ofHouse of CommonsSeatWestminsterFirst holderWilliam Wither Bramston Beachcirca. 1899 The father of the House is a title that is bestowed on the senior member of the House of Commons who has the longest continuous service. If two or more members have the same length of current uninterrupted service, then whoever was sworn in earlies...

 

 

Le réverbère est une lanterne à huile inventée en 1744 par Bourgeois de Chateaublanc, avec la collaboration de l'abbé Matherot de Preigny[1]. Il est composé d'une armature, d'un bec à huile et de réflecteurs métalliques qui réverbèrent la ou les flammes. Posée en série à Paris à partir de 1766[2] cette lanterne d'éclairage public remplaça avantageusement les lanternes à chandelles mises en place dès 1667. L'éclairage qu'elle fournit est jugé équivalent à 30 chandelles[3...

Emigrants from Zimbabwe and their descendants Ethnic group Zimbabwean diasporaTotal populationc. 16–22 million worldwide[1]Regions with significant populations Zimbabwe   13,061,239(2012)[2] South Africa1,000,000– 3,000,000[3] United Kingdom128,000[4] Australia65,000[5] Botswana50,000 United States30,000–50,000 (estimate)[6] Canada31,225[7] Zambia10,000[8] Fr...

 

 

Non-profit organization located in Canada and the United States Jewish Federations of North AmericaAbbreviationJFNAFormationJanuary 31, 1935; 89 years ago (1935-01-31)[1]Legal status501(c)(3) nonprofit organizationHeadquartersNew York CityRegion North AmericaPresident and CEOEric D. Fingerhut[2]Chair of the boardJulie Platt[3]SubsidiariesUnited Israel Appeal Inc.[4]JFBP LLC[4]Revenue (2012) US$49.0 million[4]Expenses (2012)US$4...

 

 

Wilayah SadrNebulaCitra ini memperlihatkan IC 1318 / Nebula Gamma Cygni , Terlihat ada Nebula sabit di pojok kiri bawah. paling atas yang merupakan daerah nebula gelap besar adalah Barnard 348 / Coalsack utara Credit: Erik LarsenData pengamatanSubjenisNebula emisiJarak2000-5000 tc ly   (610-1530 pc pc)Rasi bintangCygnusSebutanIC 1318, Wlayah Sadr, Nebula Gamma CygniLihat pula: Daftar nebula Wilayah Sadr (nama lain: IC 1318, Nebula Gamma Cygni,[1] HD 194093, HI...

Battle of the American Civil War in January 1865 Second Battle of Fort FisherPart of the American Civil WarThe Assault and Capture of Fort Fisher, January 19, 1865. Harper's Weekly, February 4, 1865DateJanuary 13–15, 1865LocationNew Hanover County, North Carolina33°58′17″N 77°55′05″W / 33.9715°N 77.9180°W / 33.9715; -77.9180Result Union victory[1]Belligerents  United States  Confederate StatesCommanders and leaders Alfred H. Terry David ...

 

 

Sri Lankan politician and 18th parliamentary Speaker (1941–2021) Hon.W. J. M. Lokubandaraවි. ජ. මු. ලොකුබණ්ඩාර வி.ஜ.மு. லொக்குபண்டார18th Speaker of the ParliamentIn office22 April 2004 – 8 April 2010PresidentChandrika KumaratungaMahinda RajapaksaPrime MinisterMahinda RajapaksaRatnasiri WickremanayakePreceded byJoseph Michael PereraSucceeded byChamal RajapaksaGovernor of Sabaragamuwa ProvinceIn office21 April 2010...