Rational set

In computer science, more precisely in automata theory, a rational set of a monoid is an element of the minimal class of subsets of this monoid that contains all finite subsets and is closed under union, product and Kleene star. Rational sets are useful in automata theory, formal languages and algebra.

A rational set generalizes the notion of rational (or regular) language (understood as defined by regular expressions) to monoids that are not necessarily free.[example needed]

Definition

Let be a monoid with identity element . The set of rational subsets of is the smallest set that contains every finite set and is closed under

  • union: if then
  • product: if then
  • Kleene star: if then where is the singleton containing the identity element, and where .

This means that any rational subset of can be obtained by taking a finite number of finite subsets of and applying the union, product and Kleene star operations a finite number of times.

In general a rational subset of a monoid is not a submonoid.

Example

Let be an alphabet, the set of words over is a monoid. The rational subset of are precisely the regular languages. Indeed, the regular languages may be defined by a finite regular expression.

The rational subsets of are the ultimately periodic sets of integers. More generally, the rational subsets of are the semilinear sets.[1]

Properties

McKnight's theorem states that if is finitely generated then its recognizable subset are rational sets. This is not true in general, since the whole is always recognizable but it is not rational if is infinitely generated.

Rational sets are closed under homomorphism: given and two monoids and a monoid homomorphism, if then .

is not closed under complement as the following example shows.[2] Let , the sets and are rational but is not because its projection to the second element is not rational.

The intersection of a rational subset and of a recognizable subset is rational.

For finite groups the following result of A. Anissimov and A. W. Seifert is well known: a subgroup H of a finitely generated group G is recognizable if and only if H has finite index in G. In contrast, H is rational if and only if H is finitely generated.[3]

Rational relations and rational functions

A binary relation between monoids M and N is a rational relation if the graph of the relation, regarded as a subset of M×N is a rational set in the product monoid. A function from M to N is a rational function if the graph of the function is a rational set.[4]

See also

References

  • Diekert, Volker; Kufleitner, Manfred; Rosenberg, Gerhard; Hertrampf, Ulrich (2016). "Chapter 7: Automata". Discrete Algebraic Methods. Berlin/Boston: Walter de Gruyther GmbH. ISBN 978-3-11-041332-8.
  • Jean-Éric Pin, Mathematical Foundations of Automata Theory, Chapter IV: Recognisable and rational sets
  • Samuel Eilenberg and Marcel-Paul Schützenberger, Rational Sets in Commutative Monoids, Journal of Algebra, 1969.
  1. ^ Mathematical Foundations of Automata Theory
  2. ^ cf. Jean-Éric Pin, Mathematical Foundations of Automata Theory, p. 76, Example 1.3
  3. ^ John Meakin (2007). "Groups and semigroups: connections and contrasts". In C.M. Campbell; M.R. Quick; E.F. Robertson; G.C. Smith (eds.). Groups St Andrews 2005 Volume 2. Cambridge University Press. p. 376. ISBN 978-0-521-69470-4. preprint
  4. ^ Hoffmann, Michael; Kuske, Dietrich; Otto, Friedrich; Thomas, Richard M. (2002). "Some relatives of automatic and hyperbolic groups". In Gomes, Gracinda M. S. (ed.). Semigroups, algorithms, automata and languages. Proceedings of workshops held at the International Centre of Mathematics, CIM, Coimbra, Portugal, May, June and July 2001. Singapore: World Scientific. pp. 379–406. Zbl 1031.20047.

Further reading

  • Sakarovitch, Jacques (2009). Elements of automata theory. Translated from the French by Reuben Thomas. Cambridge: Cambridge University Press. Part II: The power of algebra. ISBN 978-0-521-84425-3. Zbl 1188.68177.

Read other articles:

Katedral Santa FeKatedral Basilika Santo Fransiskus dari AsssiInggris: Cathedral Basilica of Saint Francis of Assisicode: en is deprecated Katedral Basilika Santo Fransiskus dari AsssiLokasiSanta Fe, New MexicoNegaraAmerika SerikatDenominasiGereja Katolik RomaSitus webwww.cbsfa.orgSejarahDidirikan1714 (paroki)DedikasiSanto Fransiskus dari AsssiTanggal dedikasi1887ArsitekturStatusKatedral/ParokiStatus fungsionalAktifGayaNeo-RomanesqueDibangun1869-1887AdministrasiKeuskupan AgungKeuskupan Agung ...

 

Inda Raya Ayu Miko Saputri PetahanaMulai menjabat 29 April 2019 Informasi pribadiLahir03 Desember 1981 (umur 42)Madiun, IndonesiaKebangsaanIndonesiaAlma materUniversitas Trisakti Universitas Wollongong, Sydney, AustraliaPekerjaanWakil Walikota MadiunSunting kotak info • L • B Inda Raya Ayu Miko Saputri SE. MIB ( lahir 03 Desember 1981) adalah Wakil Walikota Madiun pada periode 2019-2024 yang berpasangan dengan Drs.H.Maidi.,S.H.,M.M.,M.Pd.[1][2][3]...

 

Ilustrasi pertandingan rugbi dalam Tom Brown's School Days edisi 1911; pertama kali diterbitkan pada 1857, Tom Brown membantu memopulerkan cerita sekolah. Cerita sekolah adalah genre fiksi yang berpusat pada kehidupan sekolah pelajar praremaja dan remaja, yang sangat populer pada paruh pertama abad kedua puluh. Meskipun ada contoh cerita sekolah yang berlatar di berbagai negara, genre ini paling sering berlatar di sekolah asrama Inggris dan kebanyakan ditulis dalam subgenre anak perempuan dan...

Youth of MayHangul오월의 청춘 Hanja五月의 靑春 GenreMelodramaDrama sejarahPembuatMoon Jun Ha KBS Drama ProductionDitulis olehLee KangSutradaraSong Min-yeobPemeranLee Do-hyunGo Min-siLee Sang-yiKeum Sae-rokNegara asalKorea SelatanBahasa asliKoreaJmlh. episode12ProduksiProduser eksekutifKim Sang-hwiProduserAhn Chang-hyunKang Bo-youngPengaturan kameraKamera tunggalDurasi70 menitRumah produksiStory Hunter ProductionDistributorKBSRilis asliJaringanKBS2Format gambar1080i (HDTV)Format aud...

 

Form of old Earth creationism This article is about an interpretation of the biblical creation account. For the philosophical argument for God's existence, see God of the gaps. Part of a series onCreationism History Types Young Earth Time dilation creationism Old Earth day-age gap progressive Neo-creationism Biblical cosmology Book of Genesis creation narrative framework interpretation as an allegory Omphalos hypothesis Creation science Created kind Flood geology Creationist cosmologies Intel...

 

Voce principale: Associazione Calcio Legnano. A.C. LegnanoStagione 1978-1979Sport calcio Squadra Legnano Allenatore Luciano Sassi Commissario straordinario Rolando Landoni Serie C214º posto nel girone B Coppa Italia Semiprofessionisti3º posto nel girone 8 Maggiori presenzeCampionato: Cribio e Cautillo (35) Miglior marcatoreCampionato: Tresoldi e Rota (6) StadioComunale 1977-1978 1979-1980 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'As...

Se llaman estudios de pregrado a los estudios superiores hasta el título de grado.[1]​[2]​ Son necesarios, aunque no siempre suficientes, para poder acceder a los estudios de posgrado.[3]​ Su objetivo es preparar al estudiante para el desempeño de ocupaciones en áreas específicas, para el ejercicio de una ocupación o disciplina determinada, de naturaleza técnica, tecnológica o científica o en el área de humanidades, las artes y la filosofía entre muchas otras disci...

 

博里萨夫·约维奇攝於2009年 南斯拉夫社會主義聯邦共和國第12任總統任期1990年5月15日—1991年5月15日总理安特·马尔科维奇前任亚内兹·德尔诺夫舍克继任塞吉多·巴伊拉莫维奇(英语:Sejdo Bajramović) (代任)第12任不结盟运动秘书长任期1990年5月15日—1991年5月15日前任亚内兹·德尔诺夫舍克继任斯捷潘·梅西奇第3任塞尔维亚常驻南斯拉夫社会主义联邦共和国主席团代表任�...

 

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

Economy-wide wage and price controls Incomes policies in economics are economy-wide wage and price controls, most commonly instituted as a response to inflation, and usually seeking to establish wages and prices below free market level.[1] Incomes policies have often been resorted to during wartime. During the French Revolution, The Law of the Maximum imposed price controls (by penalty of death) in an unsuccessful attempt to curb inflation,[2] and such measures were also attem...

 

Central body of the government of Fascist Italy from 1928 to 1943 You can help expand this article with text translated from the corresponding article in Italian. (December 2011) Click [show] for important translation instructions. View a machine-translated version of the Italian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather tha...

 

1951 novel by Elizabeth Enright Spiderweb for Two: A Melendy Maze First edition dustjacket with Enright artworkAuthorElizabeth EnrightIllustratorEnrightSeriesMelendy familyGenreChildren's mystery fictionPublisherRinehart & CompanyPublication date1951Publication placeUnited StatesMedia typePrint (hardcover)Pages209 pp.[1]OCLC8989834LC ClassPZ7.E724 Sp[1]Preceded byThen There Were Five  Spiderweb for Two: A Melendy Maze is a children's novel written and i...

دير الأنبا بولا دير الأنبا بولا معلومات دير تعديل مصدري - تعديل   دير الأنبا بولا هو دير قبطي أرثوذكسي وأحد أقدم الأديرة المصرية يقع في الصحراء الشرقية بالقرب من جبال البحر الأحمر. يبعد حوالي 155 كم (96 ميل) جنوب شرق القاهرة.[1] سمي بهذا الاسم نسبة الى الأنبا بولا. كما ويُع...

 

Central channel that controls other constituent radios This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Control channel – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this message) A Cellular network tower in the Philippines.In radio communication, a control chann...

 

American film production company, 1915–1935 This article is about the defunct film studio. For its extant successor, see 20th Century Studios. For the current company, see Fox Corporation. Fox Film CorporationLogo from 1931 to 1935, before merger with Twentieth Century PicturesIndustryFilmPredecessorsGreater New York Film Rental CompanyBox Office Attraction CompanyFoundedFebruary 1, 1915; 109 years ago (1915-02-01) in Fort Lee, New JerseyFounderWilliam FoxDefunctMay 3...

2010s shōnen web manga and anime Tanaka-kun Is Always ListlessCover of the first volume featuring title character, Tanaka.田中くんはいつもけだるげ(Tanaka-kun wa Itsumo Kedaruge)GenreComedy MangaWritten byNozomi UdaPublished bySquare EnixMagazineGangan OnlineDemographicShōnenOriginal runJuly 25, 2013[1] – July 25, 2019Volumes13 Anime television seriesDirected byShinya KawatsuraWritten byAkemi OmodeMusic byHiromi MizutaniStudioSilver LinkLicensed...

 

Place in Dalarna, SwedenBorlängeSveatorget in Borlänge in 2005 BorlängeShow map of DalarnaBorlängeShow map of SwedenCoordinates: 60°29′08″N 15°26′11″E / 60.48556°N 15.43639°E / 60.48556; 15.43639Country SwedenProvinceDalarnaCountyDalarna CountyMunicipalityBorlänge MunicipalityFounded1944Area[1] • Total34.36 km2 (13.27 sq mi)Elevation151 m (495 ft)Population (2017)[2] • Total44,8...

 

Россиенский уезд Страна  Российская империя Губерния Ковенская губерния Уездный город Россиены История и география Дата образования 1795 Площадь 5689,0 вёрст² Население Население 235 362[1] (1897) чел. Россиенский уезд (лит. Raseinių apskritis) — административная единица Ко...

Пачамамакечуа Pacha Mama Мифология мифология кечуа Тип богиня Местность Анды (Империя инков) Сфера влияния фертильность Толкование имени кечуа pacha «мир, пространство, время, Вселенная» и кечуа mama «мать» Пол женский Отец Виракоча Супруг Пача Камак Символ чакана  Медиафайлы...

 

Indian cookery show Khana KhazanaDirected byGirish MadhuNitesh ChoudharyHansal MehtaStarringSanjeev KapoorCountry of originIndiaNo. of episodes649ProductionRunning timeapprox. 45 minutesOriginal releaseNetworkZee TVRelease1993 (1993) –8 September 2012 (2012-09-08) Khana Khazana was an Indian Hindi-language cookery show hosted by Indian chef, Sanjeev Kapoor.[1] The show was primarily based upon Indian cuisine. The show was directed by Hansal Mehta. Overview The first e...