The MIPS 1 instruction set is small compared to those of the contemporary 80x86 and 680x0 architectures, encoding only more commonly used operations and supporting few addressing modes. Combined with its fixed instruction length and only three different types of instruction formats, this simplified instruction decoding and processing. It employed a 5-stage instruction pipeline, enabling execution at a rate approaching one instruction per cycle, unusual for its time.
This MIPS generation supports up to four co-processors. In addition to the CPU core, the R3000 microprocessor includes a Control Processor (CP), which contains a Translation Lookaside Buffer and a Memory Management Unit.[1] The CP works as a coprocessor. Besides the CP, the R3000 can also support an external R3010 numeric coprocessor,[2] along with two other external coprocessors.
The R3000 CPU does not include level 1 cache. Instead, its on-chip cache controller operates external data and instruction caches of up to 256 KB each. It can access both caches during the same clock cycle.
The R3000 found much success and was used by many companies in their workstations and servers. Users included:
Silicon Graphics for their Professional IRIS, Personal IRIS and Indigo workstations, and the multiprocessor Power Series visualization systems.
Sony for their PlayStation and PlayStation 2 (SCPH-10000 to SCPH-700XX - clocked at 37.5 MHz for use as an I/O CPU and at 33.8 MHz for compatibility with PlayStation games) video game consoles, and NEWS workstations, as well as the Bemani System 573 Analog arcade unit, which runs on the R3000A.
Tandem Computers for their NonStop Cyclone/R and CLX/R fault-tolerant servers.
The R3000 was also used as an embedded microprocessor. When advances in technology rendered it obsolete for high-performance systems, it found continued use in lower-cost designs. Companies such as LSI Logic and Integrated Device Technology developed derivatives of the R3000 specifically for embedded systems.
Derivatives of the R3000 for non-embedded applications include:
R3000A - A further development by MIPS introduced in 1989. It operated at clock frequencies up to 40 MHz.
PR3400 - Developed by Performance Semiconductor, introduced in May 1991, also at up to 40 MHz. It integrated the Performance Semiconductor PR3000A and PR3010A onto a single die.
Derivatives of the R3000 for embedded applications include:
CW4003, DCAM-101 - Aimed at digital camera applications, the CW4003 core featured a "multiplier-addition bolt-on" (MABO) unit for accelerated integer arithmetic and a pixel-processing accelerator (PPA) unit accessible via the coprocessor 2 interface. The DCAM-101 combined the CW4003 core with modules interfacing to a camera sensor, display, storage and other peripherals, also incorporating a JPEG compression/decompression unit.[3]
PR31500, PR31700 - Microprocessors from Philips Semiconductors used in the Philips Velo handheld PC range. The 75 MHz PR31700 was fabricated in a 350 nm process, delivered in a 208-pin LQFP, it operated at 3.3 V and dissipated only 350 mW.[citation needed]
RISController - A family of embedded microprocessors from IDT. Models included the R3041, R3051, R3052, R3071 and R3081. All models included integrated L1 caches. Higher-end models included larger caches and optional MMUs and FPUs. They competed with the intel i960 and AMD 29000.
TX3900 - A microcontroller from Toshiba.
Mongoose-V - A radiation-hardened and expanded 10–15 MHz CPU for use on spacecraft, it is still in use today in applications such as NASA's New Horizons space probe.