Quasi-Monte Carlo method

Pseudorandom sequence
A Sobol sequence of low-discrepancy quasi-random numbers, showing the first 10 (red), 100 (red+blue) and 256 (red+blue+green) points from the sequence.
256 points from a pseudorandom number source, and Sobol sequence (red=1,..,10, blue=11,..,100, green=101,..,256). Points from Sobol sequence are more evenly distributed.

In numerical analysis, the quasi-Monte Carlo method is a method for numerical integration and solving some other problems using low-discrepancy sequences (also called quasi-random sequences or sub-random sequences) to achieve variance reduction. This is in contrast to the regular Monte Carlo method or Monte Carlo integration, which are based on sequences of pseudorandom numbers.

Monte Carlo and quasi-Monte Carlo methods are stated in a similar way. The problem is to approximate the integral of a function f as the average of the function evaluated at a set of points x1, ..., xN:

Since we are integrating over the s-dimensional unit cube, each xi is a vector of s elements. The difference between quasi-Monte Carlo and Monte Carlo is the way the xi are chosen. Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence, the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a pseudorandom sequence. The advantage of using low-discrepancy sequences is a faster rate of convergence. Quasi-Monte Carlo has a rate of convergence close to O(1/N), whereas the rate for the Monte Carlo method is O(N−0.5).[1]

The Quasi-Monte Carlo method recently became popular in the area of mathematical finance or computational finance.[1] In these areas, high-dimensional numerical integrals, where the integral should be evaluated within a threshold ε, occur frequently. Hence, the Monte Carlo method and the quasi-Monte Carlo method are beneficial in these situations.

Approximation error bounds of quasi-Monte Carlo

The approximation error of the quasi-Monte Carlo method is bounded by a term proportional to the discrepancy of the set x1, ..., xN. Specifically, the Koksma–Hlawka inequality states that the error

is bounded by

where V(f) is the Hardy–Krause variation of the function f (see Morokoff and Caflisch (1995) [2] for the detailed definitions). DN is the so-called star discrepancy of the set (x1,...,xN) and is defined as

where Q is a rectangular solid in [0,1]s with sides parallel to the coordinate axes.[2] The inequality can be used to show that the error of the approximation by the quasi-Monte Carlo method is , whereas the Monte Carlo method has a probabilistic error of . Thus, for sufficiently large , quasi-Monte Carlo will always outperform random Monte Carlo. However, grows exponentially quickly with the dimension, meaning a poorly-chosen sequence can be much worse than Monte Carlo in high dimensions. In practice, it is almost always possible to select an appropriate low-discrepancy sequence, or apply an appropriate transformation to the integrand, to ensure that quasi-Monte Carlo performs at least as well as Monte Carlo (and often much better).[1]

Monte Carlo and quasi-Monte Carlo for multidimensional integrations

For one-dimensional integration, quadrature methods such as the trapezoidal rule, Simpson's rule, or Newton–Cotes formulas are known to be efficient if the function is smooth. These approaches can be also used for multidimensional integrations by repeating the one-dimensional integrals over multiple dimensions. However, the number of function evaluations grows exponentially as s, the number of dimensions, increases. Hence, a method that can overcome this curse of dimensionality should be used for multidimensional integrations. The standard Monte Carlo method is frequently used when the quadrature methods are difficult or expensive to implement.[2] Monte Carlo and quasi-Monte Carlo methods are accurate and relatively fast when the dimension is high, up to 300 or higher.[3]

Morokoff and Caflisch [2] studied the performance of Monte Carlo and quasi-Monte Carlo methods for integration. In the paper, Halton, Sobol, and Faure sequences for quasi-Monte Carlo are compared with the standard Monte Carlo method using pseudorandom sequences. They found that the Halton sequence performs best for dimensions up to around 6; the Sobol sequence performs best for higher dimensions; and the Faure sequence, while outperformed by the other two, still performs better than a pseudorandom sequence.

However, Morokoff and Caflisch [2] gave examples where the advantage of the quasi-Monte Carlo is less than expected theoretically. Still, in the examples studied by Morokoff and Caflisch, the quasi-Monte Carlo method did yield a more accurate result than the Monte Carlo method with the same number of points. Morokoff and Caflisch remark that the advantage of the quasi-Monte Carlo method is greater if the integrand is smooth, and the number of dimensions s of the integral is small.

Drawbacks of quasi-Monte Carlo

Lemieux mentioned the drawbacks of quasi-Monte Carlo:[4]

  • In order for to be smaller than , needs to be small and needs to be large (e.g. ). For large s, depending on the value of N, the discrepancy of a point set from a low-discrepancy generator might be not smaller than for a random set.
  • For many functions arising in practice, (e.g. if Gaussian variables are used).
  • We only know an upper bound on the error (i.e., εV(f) DN) and it is difficult to compute and .

In order to overcome some of these difficulties, we can use a randomized quasi-Monte Carlo method.

Randomization of quasi-Monte Carlo

Since the low discrepancy sequence are not random, but deterministic, quasi-Monte Carlo method can be seen as a deterministic algorithm or derandomized algorithm. In this case, we only have the bound (e.g., εV(f) DN) for error, and the error is hard to estimate. In order to recover our ability to analyze and estimate the variance, we can randomize the method (see randomization for the general idea). The resulting method is called the randomized quasi-Monte Carlo method and can be also viewed as a variance reduction technique for the standard Monte Carlo method.[5] Among several methods, the simplest transformation procedure is through random shifting. Let {x1,...,xN} be the point set from the low discrepancy sequence. We sample s-dimensional random vector U and mix it with {x1, ..., xN}. In detail, for each xj, create

and use the sequence instead of . If we have R replications for Monte Carlo, sample s-dimensional random vector U for each replication. Randomization allows to give an estimate of the variance while still using quasi-random sequences. Compared to pure quasi Monte-Carlo, the number of samples of the quasi random sequence will be divided by R for an equivalent computational cost, which reduces the theoretical convergence rate. Compared to standard Monte-Carlo, the variance and the computation speed are slightly better from the experimental results in Tuffin (2008) [6]

See also

References

  1. ^ a b c Søren Asmussen and Peter W. Glynn, Stochastic Simulation: Algorithms and Analysis, Springer, 2007, 476 pages
  2. ^ a b c d e William J. Morokoff and Russel E. Caflisch, Quasi-Monte Carlo integration, J. Comput. Phys. 122 (1995), no. 2, 218–230. (At CiteSeer: [1])
  3. ^ Rudolf Schürer, A comparison between (quasi-)Monte Carlo and cubature rule based methods for solving high-dimensional integration problems, Mathematics and Computers in Simulation, Volume 62, Issues 3–6, 3 March 2003, 509–517
  4. ^ Christiane Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling, Springer, 2009, ISBN 978-1441926760
  5. ^ Moshe Dror, Pierre L’Ecuyer and Ferenc Szidarovszky, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, Springer 2002, pp. 419-474
  6. ^ Bruno Tuffin, Randomization of Quasi-Monte Carlo Methods for Error Estimation: Survey and Normal Approximation, Monte Carlo Methods and Applications mcma. Volume 10, Issue 3-4, Pages 617–628, ISSN (Online) 1569-3961, ISSN (Print) 0929-9629, doi:10.1515/mcma.2004.10.3-4.617, May 2008
  • R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica vol. 7, Cambridge University Press, 1998, pp. 1–49.
  • Josef Dick and Friedrich Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010, ISBN 978-0-521-19159-3
  • Gunther Leobacher and Friedrich Pillichshammer, Introduction to quasi-Monte Carlo Integration and Applications, Compact Textbooks in Mathematics, Birkhäuser, 2014, ISBN 978-3-319-03424-9
  • Michael Drmota and Robert F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Math., 1651, Springer, Berlin, 1997, ISBN 3-540-62606-9
  • William J. Morokoff and Russel E. Caflisch, Quasi-random sequences and their discrepancies, SIAM J. Sci. Comput. 15 (1994), no. 6, 1251–1279 (At CiteSeer:[2])
  • Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, 1992. ISBN 0-89871-295-5
  • Harald G. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), no. 6, 957–1041
  • Oto Strauch and Štefan Porubský, Distribution of Sequences: A Sampler, Peter Lang Publishing House, Frankfurt am Main 2005, ISBN 3-631-54013-2

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Artikel ini membahas suatu hurikan besar yang sedang berlangsung. Informasi pada halaman ini dapat berubah setiap saat seiring dengan perkembangan peristiwa dan laporan berita awal mungkin tidak dapat diandalkan. Pembaruan terakhir untuk artikel ini m...

 

The WaterfrontGeneral informationStatusDemolishedTown or cityBournemouthCountryUKCoordinates50°43′0.1″N 1°52′28.06″W / 50.716694°N 1.8744611°W / 50.716694; -1.8744611Opened1999Demolished2013 The Waterfront was a leisure complex on the seafront in Bournemouth, England. It contained an IMAX cinema and restaurants. History In January 1997, the Sheridan Group was awarded a contract to develop and operate the complex.[1] The leaseholder was the Northern ...

 

  لمعانٍ أخرى، طالع علي دياب (توضيح). علي أحمد دياب   معلومات شخصية الميلاد 23 مايو 1982 (العمر 41 سنة)دمشق  الطول 1.86 م (6 قدم 1 بوصة) مركز اللعب مدافع الجنسية سوريا  معلومات النادي النادي الحالي حاليا نادي الوحدة السوري المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2003–...

Lokomotif CC 201 83 22 Depo Induk Purwokerto. Lokomotif CC 203 98 18 Depo Induk Madiun. Lokomotif CC 206 13 86 Depo Induk Cipinang. Lokomotif adalah bagian dari rangkaian kereta api di mana terdapat mesin untuk menggerakkan kereta api. Biasanya lokomotif terletak paling depan dari rangkaian kereta api. Operator dari lokomotif disebut Masinis. Masinis menjalankan kereta api berdasarkan perintah dari pusat pengendali perjalanan kereta api melalui sinyal yang terletak di pinggir jalur rel. Jenis...

 

Anjing Chihuahua dan Great Dane adalah hasil dari seleksi buatan. Seleksi buatan (juga disebut pembiakan selektif) adalah proses ketika manusia membiakkan hewan dan tumbuhan secara selektif mengembangkan sifat fenotipik tertentu (karakteristik) dengan memilih hewan atau tumbuhan mana yang akan bereproduksi secara seksual dan memiliki keturunan bersama.[1] Istilah ini digunakan oleh Charles Darwin untuk membedakan dengan seleksi alam.[2] Berbeda dengan seleksi buatan, seleksi a...

 

artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, silakan hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) Universitas Negeri ManadoNama sebelumnyaIKIP (Institut Keguruan dan Ilmu Pendidikan) Negeri ManadoJenisPerguruan Tinggi Negeri - Badan Layanan Umu...

G3 Senapan HK G3 Jenis Senapan tempur Negara asal Jerman Sejarah pemakaian Masa penggunaan 1958–1997 (Jerman) Sejarah produksi Perancang CETME, Mauser, Heckler & Koch Tahun 1950-an Produsen Heckler & Koch Spesifikasi Berat 4.41 kg (G3A3)4.09 kg (G3A4) Panjang 1.026 mm (G3A3) Panjang laras 450 mm Peluru 7.62 × 51 mm NATO Kaliber 7.62 mm (.308 in) Mekanisme Semburan Kebelakang, Diperlambat dengan roller Rata² tembakan 600 butir/menit Kecepatan peluru 790 m/...

 

1994 single by Raekwon featuring Ghostface KillahHeaven & HellSingle by Raekwon featuring Ghostface Killahfrom the album Only Built 4 Cuban Linx... ReleasedOctober 24, 1994Recorded1994GenreHip hopLength4:56LabelLoudSongwriter(s)D. ColesC. WoodsR. DiggsS. JohnsonProducer(s)RZARaekwon singles chronology Heaven & Hell (1994) Criminology (1995) Ghostface Killah singles chronology Heaven & Hell(1994) Criminology(1995) Heaven & Hell is the solo debut single by Wu-Tang Clan r...

 

Samurai III: Duel at Ganryu IslandPoster rilis teatrikalSutradaraHiroshi InagakiProduserKazuo TakimuraDitulis olehHideji Hojo (play)Hiroshi InagakiTokuhei WakaoEiji Yoshikawa (novel)PemeranToshiro MifuneKōji TsurutaPenata musikIkuma DanPerusahaanproduksiToho StudiosDistributorToho StudiosTanggal rilis 3 Januari 1956 (1956-01-03)[1] Durasi105 menitNegaraJepangBahasaJepang Samurai III: Duel at Ganryu Island (Jepang: 宮本武蔵完結編 決闘巌流島code: ja is deprecat...

This article is part of a series on theHistory of Australia Timeline and periods Prehistory European exploration (sea) European exploration (land) 1788–1850 1851–1900 1901–1945 1945–present Topics Abortion Agriculture Antisemitism Banking Capital punishment Civil rights Cinema Constitution Diplomacy Economics Federation Immigration Labour LGBT Military Monarchy Sports Telecommunications Rail transport Religion Unfree labour By group African Australian Asian Australian Chinese Australi...

 

Pour les articles homonymes, voir McCool, William Cameron et Cameron. Cet article est une ébauche concernant un astronaute américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. William McCool Nationalité  Américain Naissance 23 septembre 1961[1]San Diego, Californie Décès 1er février 2003 (à 41 ans)Ciel du Texas Durée cumulée des missions 15 j 22 h 20 min Mission(s) STS-107 Insigne(s) mo...

 

Bones in a fish that provide facial support structure and a protective covering for the gills This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Operculum fish – news · newspapers · books · scholar · JSTOR (February 2014) (Learn how and when to remove this message) Opercular series in bony fish: operculum ...

  提示:此条目页的主题不是中華人民共和國最高領導人。 中华人民共和国 中华人民共和国政府与政治系列条目 执政党 中国共产党 党章、党旗党徽 主要负责人、领导核心 领导集体、民主集中制 意识形态、组织 以习近平同志为核心的党中央 两个维护、两个确立 全国代表大会 (二十大) 中央委员会 (二十届) 总书记:习近平 中央政治局 常务委员会 中央书记处 �...

 

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,...

 

مطار واتاي الدولي ສະໜາມບິນສາກົນວັດໄຕ إياتا: VTE – ايكاو: VLVT موجز نوع المطار عام/عسكري المشغل هيئة الطيران المدني يخدم فيينتيان  البلد لاوس  الموقع فيينتيان -  لاوس الارتفاع 564 قدم  إحداثيات 17°59′18″N 102°33′48″E / 17.988333333333°N 102.56333333333°E / 17.988333333333; 10...

British DJ and music producer Roni SizeRoni Size at the Savoy, Cork, 2005Background informationBirth nameRyan Owen Granville WilliamsBorn (1969-10-29) 29 October 1969 (age 54)Bristol, EnglandGenresDrum and bass, jungle, big beat, hip hopOccupation(s)DJ, producerYears active1988–presentLabelsV RecordingsFull CycleDope DragonMusical artist Ryan Owen Granville Williams (born 29 October 1969),[1] better known by his stage name Roni Size, is an English DJ and music producer. He came...

 

Largely abandoned theory about Jewish descent Khazar myth redirects here. For other uses, see Khazar myth (disambiguation). Khazar Khaganate, 650–850 The Khazar hypothesis of Ashkenazi ancestry, often called the Khazar myth by its critics,[1][2] is a largely abandoned historical hypothesis that postulated that Ashkenazi Jews were primarily, or to a large extent, descended from Khazars, a multi-ethnic conglomerate of mostly Turkic peoples who formed a semi-nomadic khanate in ...

 

Dominican baseball player (born 1978) In this Spanish name, the first or paternal surname is Germán and the second or maternal family name is Guridi. Baseball player Esteban GermánGermán with the Saitama Seibu LionsSecond baseman / Third basemanBorn: (1978-01-26) January 26, 1978 (age 46)Santo Domingo, Dominican RepublicBatted: RightThrew: RightProfessional debutMLB: May 5, 2002, for the Oakland AthleticsNPB: 2012, for the Saitama Seibu LionsLast appea...

American CrimeSutradaraDan MintzDitulis olehJack MooreJeff RitchiePemeranAnnabella SciorraCary ElwesCyia BattenRachael Leigh CookMichael O'NeillKip PardueFrankie RayPenata musikKurt OldmanSinematograferDan MintzPenyuntingTodd E. MillerTanggal rilis2004Durasi96 minNegaraAmerika SerikatBahasaInggris American Crime adalah film Amerika Serikat produksi tahun 2004 bergenre thriller yang disutradarai oleh Dan Mintz, berdasarkan skenario yang ditulis oleh Jack Moore dan Jeff Ritchie. Beberapa ...

 

Island in West Sumatra, Indonesia North PagaiNative name: Pagai UtaraGeographyLocationSouth East AsiaCoordinates2°42′S 100°5′E / 2.700°S 100.083°E / -2.700; 100.083ArchipelagoMentawai IslandsArea603.44 km2 (232.99 sq mi)AdministrationIndonesiaProvinceWest SumatraRegencyMentawai IslandsDemographicsPopulation16,250 (2020 Census)Pop. density26.93/km2 (69.75/sq mi)Ethnic groupsMentawai North Pagai (Indonesian: Pagai Utara) is the smallest of the...