Quantum Monte Carlo

Quantum Monte Carlo encompasses a large family of computational methods whose common aim is the study of complex quantum systems. One of the major goals of these approaches is to provide a reliable solution (or an accurate approximation) of the quantum many-body problem. The diverse flavors of quantum Monte Carlo approaches all share the common use of the Monte Carlo method to handle the multi-dimensional integrals that arise in the different formulations of the many-body problem.

Quantum Monte Carlo methods allow for a direct treatment and description of complex many-body effects encoded in the wave function, going beyond mean-field theory. In particular, there exist numerically exact and polynomially-scaling algorithms to exactly study static properties of boson systems without geometrical frustration. For fermions, there exist very good approximations to their static properties and numerically exact exponentially scaling quantum Monte Carlo algorithms, but none that are both.

Background

In principle, any physical system can be described by the many-body Schrödinger equation as long as the constituent particles are not moving "too" fast; that is, they are not moving at a speed comparable to that of light, and relativistic effects can be neglected. This is true for a wide range of electronic problems in condensed matter physics, in Bose–Einstein condensates and superfluids such as liquid helium. The ability to solve the Schrödinger equation for a given system allows prediction of its behavior, with important applications ranging from materials science to complex biological systems.

The difficulty is however that solving the Schrödinger equation requires the knowledge of the many-body wave function in the many-body Hilbert space, which typically has an exponentially large size in the number of particles. Its solution for a reasonably large number of particles is therefore typically impossible, even for modern parallel computing technology in a reasonable amount of time. Traditionally, approximations for the many-body wave function as an antisymmetric function of one-body orbitals[1] have been used, in order to have a manageable treatment of the Schrödinger equation. However, this kind of formulation has several drawbacks, either limiting the effect of quantum many-body correlations, as in the case of the Hartree–Fock (HF) approximation, or converging very slowly, as in configuration interaction applications in quantum chemistry.

Quantum Monte Carlo is a way to directly study the many-body problem and the many-body wave function beyond these approximations. The most advanced quantum Monte Carlo approaches provide an exact solution to the many-body problem for non-frustrated interacting boson systems, while providing an approximate description of interacting fermion systems. Most methods aim at computing the ground state wavefunction of the system, with the exception of path integral Monte Carlo and finite-temperature auxiliary-field Monte Carlo, which calculate the density matrix. In addition to static properties, the time-dependent Schrödinger equation can also be solved, albeit only approximately, restricting the functional form of the time-evolved wave function, as done in the time-dependent variational Monte Carlo.

From a probabilistic point of view, the computation of the top eigenvalues and the corresponding ground state eigenfunctions associated with the Schrödinger equation relies on the numerical solving of Feynman–Kac path integration problems.[2][3]

Quantum Monte Carlo methods

There are several quantum Monte Carlo methods, each of which uses Monte Carlo in different ways to solve the many-body problem.

Zero-temperature (only ground state)

  • Variational Monte Carlo: A good place to start; it is commonly used in many sorts of quantum problems.
    • Diffusion Monte Carlo: The most common high-accuracy method for electrons (that is, chemical problems), since it comes quite close to the exact ground-state energy fairly efficiently. Also used for simulating the quantum behavior of atoms, etc.
    • Reptation Monte Carlo: Recent zero-temperature method related to path integral Monte Carlo, with applications similar to diffusion Monte Carlo but with some different tradeoffs.
  • Gaussian quantum Monte Carlo
  • Path integral ground state: Mainly used for boson systems; for those it allows calculation of physical observables exactly, i.e. with arbitrary accuracy

Finite-temperature (thermodynamic)

Real-time dynamics (closed quantum systems)

See also

Notes

  1. ^ "Functional form of the wave function". Archived from the original on July 18, 2009. Retrieved April 22, 2009.
  2. ^ Caffarel, Michel; Claverie, Pierre (1988). "Development of a pure diffusion quantum Monte Carlo method using a full generalized Feynman–Kac formula. I. Formalism". The Journal of Chemical Physics. 88 (2): 1088–1099. Bibcode:1988JChPh..88.1088C. doi:10.1063/1.454227. ISSN 0021-9606.
  3. ^ Korzeniowski, A.; Fry, J. L.; Orr, D. E.; Fazleev, N. G. (August 10, 1992). "Feynman–Kac path-integral calculation of the ground-state energies of atoms". Physical Review Letters. 69 (6): 893–896. Bibcode:1992PhRvL..69..893K. doi:10.1103/PhysRevLett.69.893. PMID 10047062.
  4. ^ Rousseau, V. G. (May 20, 2008). "Stochastic Green function algorithm". Physical Review E. 77 (5): 056705. arXiv:0711.3839. Bibcode:2008PhRvE..77e6705R. doi:10.1103/physreve.77.056705. PMID 18643193. S2CID 2188292.

References

Read other articles:

Ariadne Tidur, lama disebut Cleopatra Ariadne Tidur, yang disimpan di Museum Vatikan di Kota Vatikan, adalah sebuah salinan Hadrianik Romawi dari sebuah karya pahat Helenistik dari sekolah Pergamene dari abad ke-2 SM,[1] dan merupakan salah satu karya pahat paling terkenal dari zaman kuno.[2] Varian Romawi pada masa berikutnya ditemukan di taman Villa Borghese, Roma, berada di Museum Louvre. Catatan ^ Wolfgang Helbig, Fürer durch die öffenticher Sammlungen klassischer Altert...

 

FilsafatPlato, Kant, Nietzsche, Buddha, Kong Hu Cu, Ibnu SinaPlatoKantNietzscheBuddhaKong Hu CuIbnu Sina Cabang Epistemologi Estetika Etika Hukum Logika Metafisika Politik Sosial Tradisi Afrika Analitis Aristoteles Barat Buddha Eksistensialisme Hindu Islam Jainisme Kontinental Kristen Plato Pragmatisme Timur Tiongkok Yahudi Zaman Klasik Pertengahan Modern Kontemporer Kepustakaan Epistemologi Estetika Etika Filsafat politik Logika Metafisika Filsuf Epistemologi Estetika Etika Filsuf politik da...

 

Koordinat: 40°01′39″N 22°32′20″E / 40.027432°N 22.538824°E / 40.027432; 22.538824 Akropolis Leivithra kuno Kehidupan Orfeus Leibethra atau Libethra, dalam pengucapan modern Leivithra (Greek: Λείβηθρα or Λίβηθραcode: el is deprecated ) adalah sebuah kota Makedonia kuno di kaki Gunung Olympus, dekat pemukiman saat ini dari Skotina.[1] para arkeolog menemukan makam-makam[2] disana dari akhir Zaman Perunggu (abad ke-13 sampai ke-1...

وزارة جمال عبد الناصر السابعةمعلومات عامةالبلد مصر الاختصاص مصر التكوين 16 أغسطس 1961 النهاية 18 أكتوبر 1961 المدة شهران ويومانوزارة كمال الدين حسين وزارة جمال عبد الناصر الثامنة تعديل - تعديل مصدري - تعديل ويكي بيانات وزارة الرئيس جمال عبد الناصر السابعة هي الوزارة الثمانون في...

 

Samudra Paleo-Tethys sekitar 280 juta tahun yang lalu. Paleo-Tethys atau Samudra Palaeo-Tethys adalah samudra yang terletak di batas utara Protogondwana yang mulai terbentuk pada masa Kambrium pertengahan, meluas pada masa Paleozoikum, dan pada akhirnya menutup pada masa Trias akhir, sehingga samudra ini pernah ada di Bumi selama 400 juta tahun.[1] Paleo-Tethys merupakan pendahulu Samudra Tethys (juga disebut Neo-Tethys). Samudra ini terbentuk setelah Samudra Proto-Tethys mengalami su...

 

2012 2022 Élections législatives de 2017 en Corrèze 2 sièges de députés à l'Assemblée nationale 11 et 18 juin 2017 Type d’élection Élections législatives Postes à élire 2 Candidats 26 Campagne 22 mai au 10 juin12 juin au 16 juin Corps électoral et résultats Population 241 340 Inscrits 185 184 Votants au 1er tour 106 010   57,25 %  9,7 Votes exprimés au 1er tour 102 544 Votes blancs au 1er tour 2 231 Votes nuls au 1er tour 1...

Finnish freestyle skier Antti OllilaPersonal informationNationalityFinnishBorn (1994-12-25) 25 December 1994 (age 29)Rovaniemen maalaiskunta, FinlandSportSportFreestyle skiing Antti Ollila (born 25 December 1994) is a Finnish freestyle skier. He was born in Rovaniemen maalaiskunta. He competed at the 2014 Winter Olympics in Sochi, in slopestyle.[1] References ^ Antti Ollila. Sochi2014.com. Organizing Committee of the XXII Olympic Winter Games and XI Paralympic Winter Games of 201...

 

Activities to build emotional intelligence This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Emotional thought method – news · newspapers · books · scholar · JSTOR (November 2019) (Learn how and when to remove this template message) This article may require copy editing for grammar, style, cohesion, tone, or s...

 

Commune in Île-de-France, FranceSavigny-le-TempleCommuneThe town hall in Savigny-le-Temple Coat of armsLocation (in red) within Paris inner and outer suburbsLocation of Savigny-le-Temple Savigny-le-TempleShow map of FranceSavigny-le-TempleShow map of Île-de-France (region)Coordinates: 48°35′03″N 2°35′00″E / 48.5841°N 2.5832°E / 48.5841; 2.5832CountryFranceRegionÎle-de-FranceDepartmentSeine-et-MarneArrondissementMelunCantonSavigny-le-TempleIntercommunalit...

Cet article concerne l'instrument de musique du XIXe siècle. Pour le prédécesseur de l'instrument, voir Piano-forte. Pour les autres significations, voir Piano (homonymie). Piano Un piano à queue et un piano droit. Variantes historiques ClavecinClavicordePiano-forte Classification Instrument à cordes Famille Instrument à cordes frappées et à clavier Instruments voisins ClavierSynthétiseurContinuumPiano électrique Tessiture Œuvres principales Compositions pour piano Instru...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يونيو 2019) الحدثكأس إيطاليا 1965–66 نادي فيورنتينا نادي كاتانزارو 2 1 التاريخ19 مايو 1966  الملعبملعب أولمبيكو  الحكم...

 

Position des mains sur le clavier d'un piano. Glenn Gould disait : « La technique du piano est en vérité très simple, mais il faut des années pour la maîtriser ». Technique physique du piano Position du corps face à l'instrument Les observateurs attentifs des gravures, peintures, photographies et vidéo de pianistes célèbres seront surpris de constater à quel point la position des pianistes face à leur clavier est variée. Franz Liszt nous paraît dominer son clavie...

PadayappaPoster rilis layar lebarSutradaraK. S. RavikumarProduserK. Sathya NarayanaM. V. Krishna RaoH. Vittal PrasadP. L. ThenappanDitulis olehK. S. RavikumarPemeranSivaji GanesanRajinikanthRamya KrishnanSoundaryaPenata musikA. R. RahmanSinematograferS. MurthyPrasadPenyuntingK. ThanigachalamPerusahaanproduksiArunachala Cine CreationsTanggal rilis 10 April 1999 (1999-04-10) NegaraIndiaBahasaTamil Padayappa adalah sebuah film drama berbahasa Tamil India 1999, yang ditulis dan disutra...

 

Coppa Italia 1942-1943 Competizione Coppa Italia Sport Calcio Edizione 10ª Organizzatore Direttorio Divisioni Superiori Date dal 13 settembre 1942al 30 maggio 1943 Luogo  Italia Partecipanti 34 Formula eliminazione diretta Risultati Vincitore Torino(2º titolo) Secondo Venezia Semi-finalisti Genova 1893Roma Statistiche Miglior marcatore Bruno Ispiro (5) Valentino Mazzola (5) Vittorio Sentimenti (5) Incontri disputati 34 Gol segnati 126 (3,71 per incontro) Il Grande To...

 

Kabupaten SikkaKabupatenHutan Mata Air di Pegunungan Wairterang LambangJulukan: Kota Tanah SikkaMotto: Dari Tuhan, Kembali ke TuhanPetaKabupaten SikkaPetaTampilkan peta Kepulauan Sunda KecilKabupaten SikkaKabupaten Sikka (Indonesia)Tampilkan peta IndonesiaKoordinat: 8°29′18″S 122°58′26″E / 8.4883°S 122.974°E / -8.4883; 122.974Negara IndonesiaProvinsiNusa Tenggara TimurTanggal berdiri1 Maret 1958Dasar hukumUU nomor 69 tahun 1958Ibu kotaMaumere...

For an Arthurian location, see Lyonesse. Lionesse by Arthur Rackham for Alfred W. Pollard's The Romance of King Arthur and His Knights of the Round Table (1917) In some versions of Arthurian legend, Lynette (alternatively known as Linnet, Linette, Lynet, Lynette, Lyonet) is a haughty noble lady who travels to King Arthur's court seeking help for her beautiful sister Lyonesse (also Linesse, Lioness, Lionesse, Lyones, Lyonorr, Lyonors), whose lands are besieged by the Red Knight. The young Gare...

 

Compact region at a galaxy's center with abnormally high luminosity An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active g...

 

  لمعانٍ أخرى، طالع مقاطعة فلويد (توضيح). مقاطعة فلويد     الإحداثيات 34°04′N 101°18′W / 34.07°N 101.3°W / 34.07; -101.3   [1] تاريخ التأسيس 1876  تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى تكساس  العاصمة فلويدادا  التقسيمات الإدارية فلوي�...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Elliott Cresson Medal – news · newspapers · books · scholar · JSTOR (January 2020) (Learn how and when to remove this message) AwardElliott Cresson MedalElliott Cresson Medal given to Emile Berliner in 1913CountryUSAPresented byFranklin InstituteFirst awarded18...

 

托里尼亚Torrinha市镇托里尼亚在巴西的位置坐标:22°25′33″S 48°10′08″W / 22.4258°S 48.1689°W / -22.4258; -48.1689国家巴西州圣保罗州面积 • 总计311.172 平方公里(120.144 平方英里)海拔802 公尺(2,631 英尺)人口(2007) • 總計8,918人 • 密度28.7人/平方公里(74.2人/平方英里) 托里尼亚(葡萄牙语:Torrinha)是巴西圣保罗州的...