In geometric topology, the Property P conjecture is a statement about 3-manifolds obtained by Dehn surgery on a knot in the 3-sphere. A knot in the 3-sphere is said to have Property P if every 3-manifold obtained by performing (non-trivial) Dehn surgery on the knot is not simply-connected. The conjecture states that all knots, except the unknot, have Property P.
Research on Property P was started by R. H. Bing, who popularized the name and conjecture.
This conjecture can be thought of as a first step to resolving the Poincaré conjecture, since the Lickorish–Wallace theorem says any closed, orientable 3-manifold results from Dehn surgery on a link.
If a knot has Property P, then one cannot construct a counterexample to the Poincaré conjecture by surgery along .
A proof was announced in 2004, as the combined result of efforts of mathematicians working in several different fields.
Algebraic Formulation
Let denote elements corresponding to a preferred longitude and meridian of a tubular neighborhood of .
has Property P if and only if its Knot group is never trivialised by adjoining a relation of the form for some .
Adams, Colin. The Knot Book : An elementary introduction to the mathematical theory of knots. American Mathematical Society. p. 262. ISBN0-8218-3678-1.