Pointless topology

In mathematics, pointless topology, also called point-free topology (or pointfree topology) and locale theory, is an approach to topology that avoids mentioning points, and in which the lattices of open sets are the primitive notions.[1] In this approach it becomes possible to construct topologically interesting spaces from purely algebraic data.[2]

History

The first approaches to topology were geometrical, where one started from Euclidean space and patched things together. But Marshall Stone's work on Stone duality in the 1930s showed that topology can be viewed from an algebraic point of view (lattice-theoretic). Apart from Stone, Henry Wallman was the first person to exploit this idea. Others continued this path till Charles Ehresmann and his student Jean Bénabou (and simultaneously others), made the next fundamental step in the late fifties. Their insights arose from the study of "topological" and "differentiable" categories.[2]

Ehresmann's approach involved using a category whose objects were complete lattices which satisfied a distributive law and whose morphisms were maps which preserved finite meets and arbitrary joins. He called such lattices "local lattices"; today they are called "frames" to avoid ambiguity with other notions in lattice theory.[3]

The theory of frames and locales in the contemporary sense was developed through the following decades (John Isbell, Peter Johnstone, Harold Simmons, Bernhard Banaschewski, Aleš Pultr, Till Plewe, Japie Vermeulen, Steve Vickers) into a lively branch of topology, with application in various fields, in particular also in theoretical computer science. For more on the history of locale theory see Johnstone's overview.[4]

Intuition

Traditionally, a topological space consists of a set of points together with a topology, a system of subsets called open sets that with the operations of union (as join) and intersection (as meet) forms a lattice with certain properties. Specifically, the union of any family of open sets is again an open set, and the intersection of finitely many open sets is again open. In pointless topology we take these properties of the lattice as fundamental, without requiring that the lattice elements be sets of points of some underlying space and that the lattice operation be intersection and union. Rather, point-free topology is based on the concept of a "realistic spot" instead of a point without extent. These "spots" can be joined (symbol ), akin to a union, and we also have a meet operation for spots (symbol ), akin to an intersection. Using these two operations, the spots form a complete lattice. If a spot meets a join of others it has to meet some of the constituents, which, roughly speaking, leads to the distributive law

where the and are spots and the index family can be arbitrarily large. This distributive law is also satisfied by the lattice of open sets of a topological space.

If and are topological spaces with lattices of open sets denoted by and , respectively, and is a continuous map, then, since the pre-image of an open set under a continuous map is open, we obtain a map of lattices in the opposite direction: . Such "opposite-direction" lattice maps thus serve as the proper generalization of continuous maps in the point-free setting.

Formal definitions

The basic concept is that of a frame, a complete lattice satisfying the general distributive law above. Frame homomorphisms are maps between frames that respect all joins (in particular, the least element of the lattice) and finite meets (in particular, the greatest element of the lattice). Frames, together with frame homomorphisms, form a category.

The opposite category of the category of frames is known as the category of locales. A locale is thus nothing but a frame; if we consider it as a frame, we will write it as . A locale morphism from the locale to the locale is given by a frame homomorphism .

Every topological space gives rise to a frame of open sets and thus to a locale. A locale is called spatial if it isomorphic (in the category of locales) to a locale arising from a topological space in this manner.

Examples of locales

  • As mentioned above, every topological space gives rise to a frame of open sets and thus to a locale, by definition a spatial one.
  • Given a topological space , we can also consider the collection of its regular open sets. This is a frame using as join the interior of the closure of the union, and as meet the intersection. We thus obtain another locale associated to . This locale will usually not be spatial.
  • For each and each , use a symbol and construct the free frame on these symbols, modulo the relations
(where denotes the greatest element and the smallest element of the frame.) The resulting locale is known as the "locale of surjective functions ". The relations are designed to suggest the interpretation of as the set of all those surjective functions with . Of course, there are no such surjective functions , and this is not a spatial locale.

The theory of locales

We have seen that we have a functor from the category of topological spaces and continuous maps to the category of locales. If we restrict this functor to the full subcategory of sober spaces, we obtain a full embedding of the category of sober spaces and continuous maps into the category of locales. In this sense, locales are generalizations of sober spaces.

It is possible to translate most concepts of point-set topology into the context of locales, and prove analogous theorems. Some important facts of classical topology depending on choice principles become choice-free (that is, constructive, which is, in particular, appealing for computer science). Thus for instance, arbitrary products of compact locales are compact constructively (this is Tychonoff's theorem in point-set topology), or completions of uniform locales are constructive. This can be useful if one works in a topos that does not have the axiom of choice.[5] Other advantages include the much better behaviour of paracompactness, with arbitrary products of paracompact locales being paracompact, which is not true for paracompact spaces, or the fact that subgroups of localic groups are always closed.

Another point where topology and locale theory diverge strongly is the concepts of subspaces versus sublocales, and density: given any collection of dense sublocales of a locale , their intersection is also dense in .[6] This leads to Isbell's density theorem: every locale has a smallest dense sublocale. These results have no equivalent in the realm of topological spaces.

See also

References

  1. ^ Johnstone 1983, p. 41.
  2. ^ a b Johnstone 1983, p. 42.
  3. ^ Johnstone 1983, p. 43.
  4. ^ Peter T. Johnstone, Elements of the history of locale theory, in: Handbook of the History of General Topology, vol. 3, pp. 835-851, Springer, ISBN 978-0-7923-6970-7, 2001.
  5. ^ Johnstone 1983.
  6. ^ Johnstone, Peter T. (2002). "C1.2 Locales and Spaces". Sketches of an Elephant.

Bibliography

A general introduction to pointless topology is

This is, in its own words, to be read as a trailer for Johnstone's monograph and which can be used for basic reference:

There is a recent monograph

For relations with logic:

  • 1996: Vickers, Steven, Topology via Logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.

For a more concise account see the respective chapters in:

  • 2003: Pedicchio, Maria Cristina, Tholen, Walter (editors) Categorical Foundations - Special Topics in Order, Topology, Algebra and Sheaf Theory, Encyclopedia of Mathematics and its Applications, Vol. 97, Cambridge University Press, pp. 49–101.
  • 2003: Hazewinkel, Michiel (editor) Handbook of Algebra Vol. 3, North-Holland, Amsterdam, pp. 791–857.
  • 2014: Grätzer, George, Wehrung, Friedrich (editors) Lattice Theory: Special Topics and Applications Vol. 1, Springer, Basel, pp. 55–88.

Read other articles:

العلاقات البيلاروسية الغينية روسيا البيضاء غينيا   روسيا البيضاء   غينيا تعديل مصدري - تعديل   العلاقات البيلاروسية الغينية هي العلاقات الثنائية التي تجمع بين روسيا البيضاء وغينيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدو...

 

Huhet era la forma femminile, o paredra, del dio Huh (mitologia) ed entrambi rappresentavano, nell'Ogdoade ermopolitana, l'infinito, inteso più come concetto di tempo che di spazio. in alto, babbuini che salutano il sole nascente Huhet Le maggiori notizie sulla Cosmogonia si trovavano nel Libro dei Morti e nei testi funerari raffigurati nella tomba di Seti I. Dopo essere emerso dalla materia primordiale, l'uovo cosmico era posato nelle mani di Huh ed Huhet e da esso sarebbe poi uscito Ra con...

 

Pour les articles homonymes, voir Geoffroy. Hélène Geoffroy Hélène Geoffroy en 2011. Fonctions Maire de Vaulx-en-Velin En fonction depuis le 4 juillet 2017(6 ans, 8 mois et 29 jours) Élection 4 juillet 2017 Réélection 4 juillet 2020 Prédécesseur Pierre Dussurgey 5 avril 2014 – 24 mars 2016(1 an, 11 mois et 19 jours) Élection 5 avril 2014 Prédécesseur Bernard Genin Successeur Pierre Dussurgey Vice-présidente de la Métropole de Lyondéléguée à l...

العلاقات الطاجيكستانية الفيجية طاجيكستان فيجي   طاجيكستان   فيجي تعديل مصدري - تعديل   العلاقات الطاجيكستانية الفيجية هي العلاقات الثنائية التي تجمع بين طاجيكستان وفيجي.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ا...

 

Istana GolestanSitus Warisan Dunia UNESCOTahta MatahariLokasiTeheran, IranKriteriaBudaya: ii, iii, ivNomor identifikasi1422Pengukuhan2013 (Sesi ke-37)Luas5.3 haZona pembatas26.2 haKoordinat35°40′47″N 51°25′13″E / 35.67972°N 51.42028°E / 35.67972; 51.42028Lokasi Istana GolestanTampilkan peta TehranIstana Golestan (Iran)Tampilkan peta Iran Istana Golestan (Persia: کاخ گلستان; Kākh-e-Golestān, secara harafiah: Istana Taman Mawar) adalah bek...

 

Kultur Jaringan Tanaman Kultur jaringan adalah suatu metode untuk mengisolasi bagian dari tanaman seperti sekelompok sel atau jaringan yang ditumbuhkan dalam kondisi aseptik, sehingga bagian tanaman tersebut bisa dapat memperbanyak diri hingga tumbuh menjadi tanaman-tanaman yang baru kembali dengan sifat yang sama.[1] Prinsip Teknik kultur jaringan memanfaatkan prinsip perbanyakan tumbuhan secara vegetatif.[1] Berbeda dari teknik perbanyakan tumbuhan secara konvensional, tekni...

Speech DebelleBackground informationBirth nameCorynne ElliotBorn (1983-03-17) 17 March 1983 (age 41)OriginLondon, EnglandGenresHip hopOccupationsSinger, songwriterInstrumentsVocalsYears active2008 (2008)–presentLabelsBig DadaWebsitespeechdebelle.comMusical artist Corynne Elliot (born 17 March 1983), better known as Speech Debelle,[1] is a British rapper formerly signed to the Big Dada record label.[2][3] She was the winner of the 2009 Mercury Prize for her...

 

International sporting eventSquash – Men's doubles at the 2019 Pan American GamesVenueCAR Voleibol en la VidenaDates26 July – 28 JulyCompetitors24 from 12 nationsMedalists Todd HarrityChris Hanson  United States Shawn DelierreNick Sachvie  Canada Arturo SalazarCésar Salazar  Mexico Diego ElíasAlonso Escudero  Peru«2015 2023» Squash at the2019 Pan American GamesQualificationSinglesmenwomenDoublesmenwomenmixedTe...

 

У этого термина существуют и другие значения, см. Северно-Центральный регион. областьСеверо-Центральнаяфр. Centre-Nord 13°15′ с. ш. 1°00′ з. д.HGЯO Страна Буркина-Фасо Включает 3 провинции Адм. центр Кая губернатор Фатимата Легма История и география Площадь 19 508 км² (6...

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддій�...

 

Extinct genus of fish GarnbergiaTemporal range: Anisian[1] PreꞒ Ꞓ O S D C P T J K Pg N Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Clade: Sarcopterygii Class: Actinistia Order: Coelacanthiformes Family: †Mawsoniidae Genus: †Garnbergia Garnbergia is an extinct genus of prehistoric coelacanth that lived during the Anisian stage of the Middle Triassic epoch.[1] It was discovered by Martin and Wenz classification Garnbergia ommata See als...

 

Californio statesman and ranchero José de Jesús Noé7th Alcalde of San FranciscoIn office1842–1843Preceded byFrancisco Guerrero y PalomaresSucceeded byFrancisco Sánchez12th Alcalde of San FranciscoIn office1846–1846Preceded byJosé de la Cruz SánchezSucceeded byWashington Allon Bartlett Personal detailsBorn1805Died17 March 1862Resting placeMission San Francisco de AsísSpouseGuadalupe GardunoResidence(s)Rancho Las CamaritasRancho San Miguel José de Jesús Noé (1805 – 17 Ma...

County in Ireland County in Leinster, IrelandCounty Louth Contae LúCounty Coat of armsNickname: The Wee CountyMotto(s): Lugh sáimh-ioldánach (Irish)Lugh equally skilled in many artsCountryIrelandProvinceLeinsterRegionEastern and MidlandEstablished1210[1][2]County townDundalkLargest settlementDundalkGovernment • Local authorityLouth County Council • Dáil constituencyLouth • EP constituencyMidlands–North-WestArea •&...

 

Craton forming the geological core of North America For the use of the surname Laurentia, see Laurentum. For the bioregion of the same name, see Laurentia (bioregion). For the saint, see Palatias and Laurentia. For other uses, see Laurentia (disambiguation). Laurentia basement rocks Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the fo...

 

1993 single by Sting If I Ever Lose My Faith in YouSingle by Stingfrom the album Ten Summoner's Tales Released1 February 1993 (1993-02-01)[1]Length4:29LabelA&MSongwriter(s)StingProducer(s) Sting Hugh Padgham Sting singles chronology It's Probably Me (1992) If I Ever Lose My Faith in You (1993) Seven Days (1993) Music videoSting - If I Ever Lose My Faith In You (Official Music Video) on YouTube If I Ever Lose My Faith in You is a song by English singer-songwriter Sti...

Kashtan / Kortik (Кортик) Modul tempur Kortik (tanpa rudal) Jenis Close-in weapon system Negara asal  Uni Soviet (–1991) Rusia Sejarah pemakaian Masa penggunaan 1989–sekarang Digunakan oleh Lihat Pengguna Sejarah produksi Perancang Pengembang: KBP (Arkady Shipunov)Sistem pengendali tembakan: RATEP Tahun Akhir 1970-an–? Produsen Tulamashzavod, RATEP Diproduksi 1989–sekarang Varian Kortik-M / Kashtan-M Spesifikasi Berat 15.500 kg (Kashtan)12.500 kg (Kasht...

 

Doing business with intent to defraud creditors Insolvency Processes Administration Bankruptcy Chapter 7 (US) CVA Conservatorship Dissolution Examinership IVA Liquidation Provisional liquidation Receivership Officials Insolvency practitioner Tribunal Regulatory agency Liquidator Referee in Bankruptcy Trustee in bankruptcy Claimants Creditor Preferential creditor Secured creditor Unsecured creditor Restructuring Administration (UK) Chapter 11 (US) Cram down Restructuring Scheme of arrangement ...

 

Opel CorsaOpel Corsa FInformasiProdusenOpelMasa produksi1982-sekarangBodi & rangkaBentuk kerangka5-pintu sedan Opel Corsa merupakan kendaraan sedan yang diproduksi oleh perusahaan Jerman, Opel sejak tahun 1982 untuk pasaran Eropa. Opel Corsa pertama kali diluncurkan tahun 1982 dengan kendaraan 5 pintu. Mobil ini dirakit di Zaragoza, Spanyol dan Eisenach, Jerman. Pranala luar Wikimedia Commons memiliki media mengenai Opel Corsa. Wikimedia Commons memiliki media mengenai Vauxhall Nova....

Questa voce o sezione sull'argomento sovrani tedeschi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. VitichindoCapo sassone e duca dei SassoniPredecessoreTeodorico SuccessoreAlbione NascitaVestfalia, 730 circa MorteEnger, 7 gennaio 810 ConsorteGeva[1] FigliWichbert[2] Vitichindo, noto anche come Vuitechindo, Vitikindo, Witichindo, ...

 

Can We Go Home NowAlbum studio karya The RochesDirilis1995GenreFolkLabelRykodiscProduserStewart Lerman and The RochesKronologi The Roches Will You Be My Friend? (1994)Will You Be My Friend?1994 Can We Go Home Now (1995) The Collected Works of the Roches (2003)The Collected Works of the Roches2003 Can We Go Home Now adalah album The Roches. Album ini dirilis pada tahun 1995. Daftar lagu The Great Gaels Move You (Make My Life Come True) Christlike Home Away From Home Can We Go Home Now When...