Playfair's axiom

Antecedent of Playfair's axiom: a line and a point not on the line
Consequent of Playfair's axiom: a second line, parallel to the first, passing through the point

In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate):

In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.[1]

It is equivalent to Euclid's parallel postulate in the context of Euclidean geometry[2] and was named after the Scottish mathematician John Playfair. The "at most" clause is all that is needed since it can be proved from the first four axioms that at least one parallel line exists given a line L and a point P not on L, as follows:

  1. Construct a perpendicular: Using the axioms and previously established theorems, you can construct a line perpendicular to line L that passes through P.
  2. Construct another perpendicular: A second perpendicular line is drawn to the first one, starting from point P.
  3. Parallel Line: This second perpendicular line will be parallel to L by the definition of parallel lines (i.e the alternate interior angles are congruent as per the 4th axiom).

The statement is often written with the phrase, "there is one and only one parallel". In Euclid's Elements, two lines are said to be parallel if they never meet and other characterizations of parallel lines are not used.[3][4]

This axiom is used not only in Euclidean geometry but also in the broader study of affine geometry where the concept of parallelism is central. In the affine geometry setting, the stronger form of Playfair's axiom (where "at most one" is replaced by "one and only one") is needed since the axioms of neutral geometry are not present to provide a proof of existence. Playfair's version of the axiom has become so popular that it is often referred to as Euclid's parallel axiom,[5] even though it was not Euclid's version of the axiom.

History

Proclus (410–485 A.D.) clearly makes the statement in his commentary on Euclid I.31 (Book I, Proposition 31).[6]

In 1785 William Ludlam expressed the parallel axiom as follows:[7]

Two straight lines, meeting at a point, are not both parallel to a third line.

This brief expression of Euclidean parallelism was adopted by Playfair in his textbook Elements of Geometry (1795) that was republished often. He wrote[8]

Two straight lines which intersect one another cannot be both parallel to the same straight line.

Playfair acknowledged Ludlam and others for simplifying the Euclidean assertion. In later developments the point of intersection of the two lines came first, and the denial of two parallels became expressed as a unique parallel through the given point.[9]

In 1883 Arthur Cayley was president of the British Association and expressed this opinion in his address to the Association:[10]

My own view is that Euclid's Twelfth Axiom in Playfair's form of it, does not need demonstration, but is part of our notion of space, of the physical space of our experience, which is the representation lying at the bottom of all external experience.

When David Hilbert wrote his book, Foundations of Geometry (1899),[11] providing a new set of axioms for Euclidean geometry, he used Playfair's form of the axiom instead of the original Euclidean version for discussing parallel lines.[12]

Relation with Euclid's fifth postulate

If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side.

Euclid's parallel postulate states:

If a line segment intersects two straight lines forming two interior angles on the same side that sum to less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.[13]

The complexity of this statement when compared to Playfair's formulation is certainly a leading contribution to the popularity of quoting Playfair's axiom in discussions of the parallel postulate.

Within the context of absolute geometry the two statements are equivalent, meaning that each can be proved by assuming the other in the presence of the remaining axioms of the geometry. This is not to say that the statements are logically equivalent (i.e., one can be proved from the other using only formal manipulations of logic), since, for example, when interpreted in the spherical model of elliptical geometry one statement is true and the other isn't.[14] Logically equivalent statements have the same truth value in all models in which they have interpretations.

The proofs below assume that all the axioms of absolute (neutral) geometry are valid.

Euclid's fifth postulate implies Playfair's axiom

The easiest way to show this is using the Euclidean theorem (equivalent to the fifth postulate) that states that the angles of a triangle sum to two right angles. Given a line and a point P not on that line, construct a line, t, perpendicular to the given one through the point P, and then a perpendicular to this perpendicular at the point P. This line is parallel because it cannot meet and form a triangle, which is stated in Book 1 Proposition 27 in Euclid's Elements.[15] Now it can be seen that no other parallels exist. If n was a second line through P, then n makes an acute angle with t (since it is not the perpendicular) and the hypothesis of the fifth postulate holds, and so, n meets .[16]

Playfair's axiom implies Euclid's fifth postulate

Given that Playfair's postulate implies that only the perpendicular to the perpendicular is a parallel, the lines of the Euclid construction will have to cut each other in a point. It is also necessary to prove that they will do it in the side where the angles sum to less than two right angles, but this is more difficult.[17]

Importance of triangle congruence

The classical equivalence between Playfair's axiom and Euclid's fifth postulate collapses in the absence of triangle congruence.[18] This is shown by constructing a geometry that redefines angles in a way that respects Hilbert's axioms of incidence, order, and congruence, except for the Side-Angle-Side (SAS) congruence. This geometry models the classical Playfair's axiom but not Euclid's fifth postulate.

Transitivity of parallelism

Proposition 30 of Euclid reads, "Two lines, each parallel to a third line, are parallel to each other." It was noted[19] by Augustus De Morgan that this proposition is logically equivalent to Playfair’s axiom. This notice was recounted[20] by T. L. Heath in 1908. De Morgan’s argument runs as follows: Let X be the set of pairs of distinct lines which meet and Y the set of distinct pairs of lines each of which is parallel to a single common line. If z represents a pair of distinct lines, then the statement,

For all z, if z is in X then z is not in Y,

is Playfair's axiom (in De Morgan's terms, No X is Y) and its logically equivalent contrapositive,

For all z, if z is in Y then z is not in X,

is Euclid I.30, the transitivity of parallelism (No Y is X).

More recently the implication has been phrased differently in terms of the binary relation expressed by parallel lines: In affine geometry the relation is taken to be an equivalence relation, which means that a line is considered to be parallel to itself. Andy Liu[21] wrote, "Let P be a point not on line 2. Suppose both line 1 and line 3 pass through P and are parallel to line 2. By transitivity, they are parallel to each other, and hence cannot have exactly P in common. It follows that they are the same line, which is Playfair's axiom."

Notes

  1. ^ Playfair 1846, p. 29
  2. ^ more precisely, in the context of absolute geometry.
  3. ^ Euclid's elements, Book I, definition 23
  4. ^ Heath 1956, Vol. 1, p. 190
  5. ^ for instance, Rafael Artzy (1965) Linear Geometry, page 202, Addison-Wesley
  6. ^ Heath 1956, Vol. 1, p. 220
  7. ^ William Ludlam (1785) The Rudiments of Mathematics, p. 145, Cambridge
  8. ^ Playfair 1846, p. 11
  9. ^ Playfair 1846, p. 291
  10. ^ William Barrett Frankland (1910) Theories of Parallelism: A Historic Critique, page 31, Cambridge University Press
  11. ^ Hilbert, David (1990) [1971], Foundations of Geometry [Grundlagen der Geometrie], translated by Leo Unger from the 10th German edition (2nd English ed.), La Salle, IL: Open Court Publishing, ISBN 0-87548-164-7
  12. ^ Eves 1963, pp. 385-7
  13. ^ George Phillips (1826) Elements of Geometry (containing the first six books of Euclid), p. 3, Baldwin, Cradock, and Joy
  14. ^ Henderson, David W.; Taimiņa, Daina (2005), Experiencing Geometry: Euclidean and Non-Euclidean with History (3rd ed.), Upper Saddle River, NJ: Pearson Prentice Hall, p. 139, ISBN 0-13-143748-8
  15. ^ This argument assumes more than is needed to prove the result. There are proofs of the existence of parallels which do not assume an equivalent of the fifth postulate.
  16. ^ Greenberg 1974, p. 107
  17. ^ The proof may be found in Heath 1956, Vol. 1, p. 313
  18. ^ Brown, Elizabeth T.; Castner, Emily; Davis, Stephen; O’Shea, Edwin; Seryozhenkov, Edouard; Vargas, A. J. (2019-08-01). "On the equivalence of Playfair's axiom to the parallel postulate". Journal of Geometry. 110 (2): 42. arXiv:1903.05233. doi:10.1007/s00022-019-0496-9. ISSN 1420-8997.
  19. ^ Supplementary Remarks on the first six Books of Euclid's Elements in the Companion to the Almanac, 1849.
  20. ^ Heath 1956, Vol. 1, p. 314
  21. ^ The College Mathematics Journal 42(5):372

References

(3 vols.): ISBN 0-486-60088-2 (vol. 1), ISBN 0-486-60089-0 (vol. 2), ISBN 0-486-60090-4 (vol. 3).

Read other articles:

Christopher C. Miller Pelaksana tugas Menteri Pertahanan Amerika SerikatMasa jabatan9 November 2020 – 22 Januari 2021PresidenDonald Trump PendahuluMark EsperPenggantiLloyd AustinDirektur Pusat Pemberantasan Terorisme NasionalPetahanaMulai menjabat 10 Agustus 2020PresidenDonald Trump PendahuluJoseph MaguirePenggantiPetahanaPelaksana tugas Asisten Menteri Pertahanan untuk Operasi Khusus dan Konflik Intensitas RendahMasa jabatan19 Juni 2020 – 10 Agustus 2020PresidenDona...

 

 

Pour les articles homonymes, voir Grand-Place (homonymie) et Grand-Place de Bruxelles (homonymie). Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (juillet 2016). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la secti...

 

 

Musée archéologique Saint-Pierre de VienneInformations généralesType Musée archéologique, site historique, collection (en)Ouverture 1872Visiteurs par an 6 792[1] (2008)Site web site du muséeCollectionsCollections musée archéologiqueBâtimentProtection Classé MH (1862)LocalisationPays FranceCommune VienneAdresse Place Saint-Pierre 38200 VienneCoordonnées 45° 31′ 25″ N, 4° 52′ 15″ ELocalisation sur la carte d’IsèreLocalisation sur ...

B

  此條目介紹的是拉丁字母中的第2个字母。关于其他用法,请见「B (消歧义)」。   提示:此条目页的主题不是希腊字母Β、西里尔字母В、Б、Ъ、Ь或德语字母ẞ、ß。 BB b(见下)用法書寫系統拉丁字母英文字母ISO基本拉丁字母(英语:ISO basic Latin alphabet)类型全音素文字相关所属語言拉丁语读音方法 [b][p][ɓ](适应变体)Unicode编码U+0042, U+0062字母顺位2数值 2歷史發...

 

 

For related races, see 1976 United States Senate elections. 1976 United States Senate election in Indiana ← 1970 November 2, 1976 1982 →   Nominee Richard Lugar Vance Hartke Party Republican Democratic Popular vote 1,275,833 868,522 Percentage 59.03% 40.19% County results Lugar:      50–60%      60–70%      70–80% Hartke:      50–60%    &#...

 

 

Rachel Weisz Weisz en 2019Información personalNombre de nacimiento Rachel Hannah WeiszNacimiento 7 de marzo de 1970 (54 años) Londres, Inglaterra, Reino UnidoResidencia Nueva York y Londres Nacionalidad Británica, EstadounidenseLengua materna Inglés e inglés británico Características físicasAltura 1,68 m (5′ 6″)Ojos Marrón claro y avellana Cabello Castaño oscuro FamiliaCónyuge Daniel Craig (matr. 2011)Pareja Darren Aronofsky (2001-2010)Hijos 2EducaciónEducada en ...

Vous lisez un « bon article » labellisé en 2013. Pour les articles homonymes, voir McKinley. Ne doit pas être confondu avec William B. McKinley. William McKinley Portrait du président McKinley (Auteur inconnu, 1900). Fonctions 25e président des États-Unis 4 mars 1897 – 14 septembre 1901(4 ans, 6 mois et 10 jours) Élection 3 novembre 1896 Réélection 6 novembre 1900 Vice-président Garret Hobart (1897-1899)Theodore Roosevelt (1901) Gouvernement Administrati...

 

 

Rasmus Kristensen Nazionalità  Danimarca Altezza 186 cm Peso 70 kg Calcio Ruolo Difensore Squadra  Roma CarrieraGiovanili 2003-2010 Brande IF2010-2012 Herning Fremad2012-2016 MidtjyllandSquadre di club1 2016-2018 Midtjylland54 (5)[1]2018-2019 Ajax20 (0)2019-2022 Salisburgo72 (10)2022-2023 Leeds Utd26 (3)2023-→  Roma26 (1)Nazionale 2015 Danimarca U-185 (1)2015-2016 Danimarca U-1913 (2)2016 Danimarca U-201 (0)2016-2019 Danimarca U-2127 (6...

 

 

American legislative district Map of Massachusetts House of Representatives' 11th Plymouth district, based on the 2010 United States census. Massachusetts House of Representatives' 11th Plymouth district in the United States is one of 160 legislative districts included in the lower house of the Massachusetts General Court. It covers parts of Bristol County and Plymouth County.[1] Democrat Rita Mendes of Easton represented the district had represented the district since 2023.[2]...

Planned class of Soviet battlecruisers Side view as the design appeared in early 1939 Class overview Builders Shipyard No. 194, Marti, Leningrad Shipyard No. 200, 61 Communards, Nikolayev Operators Soviet Navy Preceded byBorodino class (planned) Succeeded byStalingrad class (planned) Built1939–1941 Planned2–3 Completed0 Cancelled2 General characteristics (Project 69-I) TypeBattlecruiser Displacement39,660 t (39,034 long tons) (standard) Length250.5 m (821 ft 10...

 

 

阿尔维诺波利斯Alvinópolis市镇阿尔维诺波利斯在巴西的位置坐标:20°06′25″S 43°02′56″W / 20.1069°S 43.0489°W / -20.1069; -43.0489国家巴西州米纳斯吉拉斯州面积 • 总计599.343 平方公里(231.408 平方英里)海拔620 公尺(2,030 英尺)人口 • 總計15,251人 • 密度25.4人/平方公里(65.9人/平方英里) 阿尔维诺波利斯(葡萄牙语:Alvi...

 

 

Portamento (en plural, portamenti) en música es la transición de un sonido hasta otro más agudo o más grave, sin que exista una discontinuidad o salto al pasar de uno a otro. En ocasiones también se utiliza de manera intercambiable con el término anticipación. En italiano es un sustantivo que significa literalmente transporte, cargamento. Se trata de un término musical procedente de la expresión italiana portamento della voce que quiere decir transporte de la voz.[1]​[2]​...

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Football Club Bolzano 1996. Associazione Calcio BolzanoStagione 1954-1955Sport calcio Squadra Bolzano Allenatore Renato Bottaccini Presidente Angelo Facchin Serie C17º posto. Retrocede in IV Serie Maggiori presenzeCampionato: Leoni (34) Miglior marcatoreCampiona...

 

 

Musannif Ryacudu Informasi pribadiLahir(1924-02-28)28 Februari 1924Mesir Ilir, Bahuga, Way Kanan, LampungMeninggal6 Maret 1987(1987-03-06) (umur 63)JakartaSuami/istriNy. R.A. ZuharyaAnak1. Jenderal (TNI) Ryamizard Ryacudu 2. Ryamuazzamsyah 3. Nursandrya 4. Heryati Zuraida 5. Syamsurya Ryacudu 6. Krisna Murthy 7. Daan Rizal 8. Rya Irawan (Aim) 9. Iriana TrimurthyKerabatJenderal TNI (Purn.) Try Sutrisno (besan)Alma materPETA (1943)PekerjaanTNIKarier militerPihak IndonesiaDinas/cabang ...

 

 

American editor and journalist This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the ...

     1ª Sección      2ª Sección      3ª Sección      4ª Sección      5ª Sección      6ª Sección      7ª Sección      8ª Sección/Capital La 6ª Sección Electoral de la Provincia de Buenos Aires es una de las 8 divisiones territoriales que dicha provincia presenta para la elección...

 

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Unione Sportiva Lecce. US LecceStagione 1960-1961Sport calcio Squadra Lecce Allenatore Dino Bovoli Presidente Germano Ventura Serie C8º Maggiori presenzeCampionato: Bitetto (33)Totale: Bitetto (33) Miglior marcatoreCampionato: Luna (14)Totale: Luna (14) StadioCa...

 

 

US FBI special division 38°54′12″N 77°14′47″W / 38.9033°N 77.2465°W / 38.9033; -77.2465 Terrorist Screening CenterEmblem of the Terrorist Screening CenterActiveDecember 1, 2003 – present[1](20 years)CountryUnited StatesAgencyFederal Bureau of InvestigationPart ofNational Security BranchHeadquartersJ. Edgar Hoover BuildingWashington, D.C.AbbreviationTSCCommandersCurrentcommanderMichael Glasheen[2] The Terrorist Screening Center (TSC) i...

Intelsat V F-3 → Intelsat 503Mission typeCommunicationOperatorCOMSAT / INTELSATCOSPAR ID1981-119A [1]SATCAT no.12994Mission duration7 years (planned) Spacecraft propertiesBusIntelsat VManufacturerFord AerospaceLaunch mass1928 kgDry mass1012 kgDimensions1.66 x 2.1 x 1.77 metresPower1800 watts Start of missionLaunch date15 December 1981,23:35:00 UTCRocketAtlas SLV-3D Centaur-D1AR (AC-55)Launch siteCCAFS, LC-36BContractorGeneral Dynamics End of missionDisposalGraveyard orbitDeactivate...

 

 

بي إن جيصورة نرد (زهر) بصيغة PNGامتداد الملف pngصيغة وسائط الإنترنت image/png[1]توقيع الملف/عدد سحري 89504E470D0A1A0Aأول إصدار 1 أكتوبر 1996امتدّ لـ خوارزمية الانكماش[1]المعايير 15948مواقع الويب libpng.org…[2] (الإنجليزية)png-mng.sourceforge.net… (الإنجليزية) تعديل - تعديل مصدري - تعديل ويكي بيانا�...