Planarity

Planarity is a 2005 puzzle computer game by John Tantalo, based on a concept by Mary Radcliffe at Western Michigan University.[1] The name comes from the concept of planar graphs in graph theory; these are graphs that can be embedded in the Euclidean plane so that no edges intersect. By Fáry's theorem, if a graph is planar, it can be drawn without crossings so that all of its edges are straight line segments. In the planarity game, the player is presented with a circular layout of a planar graph, with all the vertices placed on a single circle and with many crossings. The goal for the player is to eliminate all of the crossings and construct a straight-line embedding of the graph by moving the vertices one by one into better positions.

History and versions

The game was written in Flash by John Tantalo at Case Western Reserve University in 2005.[2] Online popularity and the local notoriety he gained placed Tantalo as one of Cleveland's most interesting people for 2006.[3][4] It in turn has inspired the creation of a GTK+ version by Xiph.org's Chris Montgomery, which possesses additional level generation algorithms and the ability to manipulate multiple nodes at once.[5]

Puzzle generation algorithm

The definition of the planarity puzzle does not depend on how the planar graphs in the puzzle are generated, but the original implementation uses the following algorithm:

  1. Generate a set of random lines in a plane such that no two lines are parallel and no three lines meet in a single point.
  2. Calculate the intersections of every line pair.
  3. Create a graph with a vertex for each intersection and an edge for each line segment connecting two intersections (the arrangement of the lines).

If a graph is generated from lines, then the graph will have exactly vertices (each line has vertices, and each vertex is shared with one other line) and edges (each line contains edges). The first level of Planarity is built with lines, so it has vertices and edges. Each level after is generated by one more line than the last. If a level was generated with lines, then the next level has more vertices and more edges.

The best known algorithms from computational geometry for constructing the graphs of line arrangements solve the problem in time,[6] linear in the size of the graph to be constructed, but they are somewhat complex. Alternatively and more simply, it is possible to index each crossing point by the pair of lines that cross at that point, sort the crossings along each line by their -coordinates, and use this sorted ordering to generate the edges of the planar graph, in near-optimal time. Once the vertices and edges of the graph have been generated, they may be placed evenly around a circle using a random permutation.

The problem of determining whether a graph is planar can be solved in linear time,[7] and any such graph is guaranteed to have a straight-line embedding by Fáry's theorem, that can also be found from the planar embedding in linear time.[8] Therefore, any puzzle could be solved in linear time by a computer. However, these puzzles are not as straightforward for human players to solve.

In the field of computational geometry, the process of moving a subset of the vertices in a graph embedding to eliminate edge crossings has been studied by Pach and Tardos (2002),[9] and others, inspired by the planarity puzzle.[10][11][12][13] The results of these researchers shows that (in theory, assuming that the field of play is the infinite plane rather than a bounded rectangle) it is always possible to solve the puzzle while leaving of the input vertices fixed in place at their original positions, for a constant that has not been determined precisely but lies between 1/4 and slightly less than 1/2. When the planar graph to be untangled is a cycle graph, a larger number of vertices may be fixed in place. However, determining the largest number of vertices that may be left in place for a particular input puzzle (or equivalently, the smallest number of moves needed to solve the puzzle) is NP-complete.

Verbitsky (2008) has shown that the randomized circular layout used for the initial state of Planarity is nearly the worst possible in terms of its number of crossings: regardless of what planar graph is to be tangled, the expected value of the number of crossings for this layout is within a factor of three of the largest number of crossings among all layouts.[14]

In 2014, mathematician David Eppstein published a paper[15] providing an effective algorithm for solving planar graphs generated by the original Planarity game, based on the specifics of the puzzle generation algorithm.

References

  1. ^ Arar, Yardena (August 1, 2005), "Cat's Cradle on Steroids", Today @ PC World, PCWorld, archived from the original on 2009-06-04
  2. ^ Massie, Laura (2005-06-20). "Case student develops booming on-line game". Case Western Reserve University News Center. Retrieved 2007-09-30.
  3. ^ Castro, Laura (2005-11-18). "Case student one of Cleveland's "Most Interesting People"". The Observer. Archived from the original on September 8, 2006. Retrieved 2007-09-30.
  4. ^ "Most Interesting People 2006" (Press release). Cleveland Magazine. January 2006. Retrieved 2015-05-19.
  5. ^ "gPlanarity home".
  6. ^ Chazelle, B.; Guibas, L. J.; Lee, D. T. (1985), "The power of geometric duality", BIT, 25 (1): 76–90, doi:10.1007/BF01934990
  7. ^ Mehlhorn, K.; Mutzel, P. (1996), "On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm", Algorithmica, 16 (2): 233–242, doi:10.1007/s004539900046, hdl:11858/00-001M-0000-0014-B51D-B, MR 1394503
  8. ^ de Fraysseix, Hubert; Pach, János; Pollack, Richard (1990), "How to draw a planar graph on a grid", Combinatorica, 10: 41–51, doi:10.1007/BF02122694, MR 1075065
  9. ^ Pach, János; Tardos, Gábor (2002), "Untangling a polygon", Discrete & Computational Geometry, 28 (4): 585–592, doi:10.1007/s00454-002-2889-y
  10. ^ Bose, Prosenjit; Dujmovic, Vida; Hurtado, Ferran; Langerman, Stefan; Morin, Pat; Wood, David R. (2008), "A polynomial bound for untangling geometric planar graphs", Discrete & Computational Geometry, 42 (4): 570–585, arXiv:0710.1641, doi:10.1007/s00454-008-9125-3
  11. ^ Cibulka, Josef (2009), "Untangling Polygons and Graphs", Discrete & Computational Geometry, 43 (2): 402–411, arXiv:0802.1312, doi:10.1007/s00454-009-9150-x
  12. ^ Goaoc, Xavier; Kratochvíl, Jan; Okamoto, Yoshio; Shin, Chan-Su; Spillner, Andreas; Wolff, Alexander (2009), "Untangling a Planar Graph", Discrete & Computational Geometry, 42 (4): 542–569, arXiv:0709.0170, doi:10.1007/s00454-008-9130-6
  13. ^ Cano, Javier; Tóth, Csaba D.; Urrutia, Jorge (2014), "Upper bound constructions for untangling planar geometric graphs", SIAM Journal on Discrete Mathematics, 28 (4): 1935–1943, doi:10.1137/130924172, MR 3277216
  14. ^ Verbitsky, Oleg (2008), "On the obfuscation complexity of planar graphs", Theoretical Computer Science, 396 (1–3): 294–300, arXiv:0705.3748, doi:10.1016/j.tcs.2008.02.032, MR 2412266
  15. ^ Eppstein, David (2014), "Drawing arrangement graphs in small grids, or how to play planarity", Journal of Graph Algorithms and Applications, 18 (2): 211–231, arXiv:1308.0066, doi:10.7155/jgaa.00319, MR 3213195

Read other articles:

Mekanisme umum untuk reaksi hidrolisis. Kesetimbangan antara hidrolisis dan kondensasi disimbolkan dengan reaksi dua arah. Hidrolisis adalah penguraian zat dalam reaksi kimia yang disebabkan oleh air.[1] Reaksi kimia dalam hidrolisis memecah molekul air (H2O) menjadi kation hidrogen (H+) dan anion hidroksida (OH−).[2] Hidrolisis bergantung pada kimiawi, kelarutan, derajat keasaman dan oksidasi-reduksi dari setiap senyawa.[3] Secara kimia dan fisiologi, hidrolisis mer...

 

 

Alfred VailBiographieNaissance 25 septembre 1809MorristownDécès 18 janvier 1859 (à 49 ans)MorristownNom dans la langue maternelle Alfred Lewis VailNationalité américaineFormation Université de New YorkActivité InventeurSignaturemodifier - modifier le code - modifier Wikidata Cet article est une ébauche concernant les télécommunications. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Alfred Lewis V...

 

 

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

Stasiun Kogota小牛田駅Stasiun Kogota, Juni 2006LokasiFujigasaki, Misato-machi, Tōda-gun, Miyagi-ken 987-0001JepangKoordinat38°32′26″N 141°03′52″E / 38.540666°N 141.064444°E / 38.540666; 141.064444Koordinat: 38°32′26″N 141°03′52″E / 38.540666°N 141.064444°E / 38.540666; 141.064444Operator JR EastJalur ■ Jalur Utama Tōhoku ■ Jalur Ishinomaki ■ Jalur Rikuu Timur Letak395 km dari TokyoJumlah peron2 peron pulauJuml...

 

 

Hilda di LussemburgoLa principessa Hilda nel 1918Principessa consorte di SchwarzenbergStemma In carica1⁰ ottobre 1938 –27 febbraio 1950(11 anni e 149 giorni) PredecessoreTeresa di Trauttmansdorf-Weinsberg SuccessoreTherese zu Hardegg Granduchessa ereditaria del LussemburgoIn carica14 gennaio 1919 –5 gennaio 1921(1 anno e 357 giorni) PredecessoreCarlotta SuccessoreGiovanni Nome completofrancese: Hilda Sophie Marie Adélaïde Wilhelmineitaliano: Ilda So...

 

 

† Человек прямоходящий Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеНадкласс:ЧетвероногиеКлада:АмниотыКлада:Синапсиды�...

Chronologies Données clés 1503 1504 1505  1506  1507 1508 1509Décennies :1470 1480 1490  1500  1510 1520 1530Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature () et Musique classique   Ingénierie (), Architecture et ()   Politique Droit   Religion (,)   Science () et Santé et m�...

 

 

Questa voce o sezione sull'argomento società calcistiche italiane non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. SSD Casarano CalcioCalcio Rossoazzurri, Serpi Segni distintiviUniformi di gara Casa Trasferta Terza divisa Colori sociali Rosso, azzurro SimboliSacara InnoCasarano SeiNiccolò Verrienti Dati societariCittàCasarano Nazione Italia Confed...

 

 

Vincenzo Esposito Nazionalità  Italia Altezza 179 cm Peso 69 kg Calcio Ruolo Allenatore (ex centrocampista) Termine carriera 1996 - giocatore CarrieraGiovanili  TorinoSquadre di club1 1981-1982 Torino2 (0)1982-1986 Prato116 (1)1986-1988 Lazio47 (0)1988-1989 Atalanta28 (0)1989-1992 Cesena52 (3)1992-1996 Prato72 (6)Carriera da allenatore 1996-1997 PratoVice1997 Prato1998-2004 Prato2004-2005 Grosseto2005-2006 AlbinoLeffe2006-2009...

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁�...

 

 

جون كيربي (بالإنجليزية: John Kirby)‏  منسق مجلس الأمن القومي الأمريكي للاتصالات الاستراتيجية في المنصبمايو 2022 – حتى الآن معلومات شخصية الميلاد 3 يونيو 1963 (61 سنة)  سانت بيترسبرغ  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة جنوب فلوريدا (التخصص:تاريخ) (ال...

 

 

This article is about the independent Christian denomination founded by Joseph René Vilatte in the United States. For the Catholic Church, also known as the Roman Catholic Church, in the United States, see Catholic Church in the United States. For other uses, see American Catholic Church. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Americ...

Place Stanislas, Place de la Carrière dan Place d'Alliance di NancySitus Warisan Dunia UNESCOKriteriaBudaya: i, ivNomor identifikasi229Pengukuhan1983 (7) Place Stanislas adalah sebuah alun-alun bergaya arsitektur klasik yang terletak di kota Nancy, Lorraine, Prancis. Alun-alun ini merupakan bagian dari Situs Warisan Dunia UNESCO. Pembangunannya diperintahkan oleh Adipati Lorraine Stanislas Leszczyński dan dilancarkan dari tahun 1751 hingga 1755 di bawah pengawasan arsitek Emmanuel Hér...

 

 

Stora Hotellet hotell Stora Hotellet Land Sverige Region Jönköpings Län Kommun Jönköping Ort Jönköping Adress Hotellplan 3 Arkitekt Birger Oppman, Helgo Zettervall Färdigställande 1860 Stora hotellet, ursprungligen Jönköpings Hotell, är ett hotell som ligger i centrala Jönköping. Hotellet byggdes och ritades av Birger Oppman med Helgo Zettervall som assistent. Byggandet skedde 1856–60, men hotellet togs delvis i bruk redan 1858 för ett lantbruksmöte i staden. Det invigdes d...

 

 

Ethical theory based on maximizing well-being This article discusses utilitarian ethical and philosophical theory. For John Stuart Mill's book, see Utilitarianism (book). For the architectural theory, see Form follows function. Part of a series onUtilitarianism Predecessors Mozi Shantideva David Hume Claude Adrien Helvétius Cesare Beccaria William Godwin Francis Hutcheson William Paley Key proponents Jeremy Bentham John Stuart Mill Henry Sidgwick R. M. Hare Peter Singer Types of utilitariani...

For the 1951 novel of a similar name, see The Caine Mutiny. 20th episode of the 8th season of The Simpsons The Canine MutinyThe Simpsons episodeBart and Laddie dispose of the credit card.Episode no.Season 8Episode 20Directed byDominic PolcinoWritten byRon HaugeProduction code4F16Original air dateApril 13, 1997 (1997-04-13)Guest appearanceFrank Welker as LaddieEpisode featuresChalkboard gagA fire drill does not demand a fire[1]Couch gagThe couch is folded out into a...

 

 

Warner Anderson Warner Anderson (Brooklyn, 10 marzo 1911 – Santa Monica, 26 agosto 1976) è stato un attore statunitense. Indice 1 Biografia 2 Morte 3 Filmografia parziale 3.1 Cinema 3.2 Televisione 4 Doppiatori italiani 5 Note 6 Altri progetti 7 Collegamenti esterni Biografia Anderson nacque a Brooklyn, New York, il 10 marzo 1911, da una famiglia di artisti teatrali.[1] Era un Repubblicano.[2] Nel 1915 iniziò la carriera come attore bambino. Un articolo di giornale contemp...

 

 

Canegratecomune Canegrate – VedutaPalazzo Visconti-Castelli LocalizzazioneStato Italia Regione Lombardia Città metropolitana Milano AmministrazioneSindacoMatteo Modica (lista civica di centro-sinistra) dal 12-6-2022 (1º mandato) TerritorioCoordinate45°34′N 8°56′E45°34′N, 8°56′E (Canegrate) Altitudine196 m s.l.m. Superficie5,25[1] km² Abitanti12 488[2] (31-12-2021) Densità2 378,67 ab./km² Comuni confinantiBu...

في هذه المقالة ألفاظ تعظيم تمدح موضوع المقالة، وهذا مخالف لأسلوب الكتابة الموسوعية. فضلاً، أَزِل ألفاظ التفخيم واكتفِ بعرض الحقائق بصورة موضوعية ومجردة ودون انحياز. (نقاش)   ميّز عن نستعليق. خط فارسيتعديل - تعديل مصدري - تعديل ويكي بيانات أنموذج من الخط الفارسي أو خط ال...

 

 

Form of vision aid This article is about the eyewear. For drinking vessels, see List of glassware. For other uses, see Glasses (disambiguation). Spectacles redirects here. For other uses, see Spectacle (disambiguation). GlassesTwo pairs of modern glassesOther namesEyeglasses, spectaclesSpecialtyOphthalmology, optometry[edit on Wikidata] Glasses, also known as eyeglasses and spectacles, are vision eyewear with clear or tinted lenses mounted in a frame that holds them in front of a person's...