Picard–Vessiot theory

In differential algebra, Picard–Vessiot theory is the study of the differential field extension generated by the solutions of a linear differential equation, using the differential Galois group of the field extension. A major goal is to describe when the differential equation can be solved by quadratures in terms of properties of the differential Galois group. The theory was initiated by Émile Picard and Ernest Vessiot from about 1883 to 1904.

Kolchin (1973) and van der Put & Singer (2003) give detailed accounts of Picard–Vessiot theory.

History

The history of Picard–Vessiot theory is discussed by Borel (2001, chapter VIII).

Picard–Vessiot theory was developed by Picard between 1883 and 1898 and by Vessiot from 1892 to 1904 (summarized in (Picard 1908, chapter XVII) and Vessiot (1892, 1910)). The main result of their theory says very roughly that a linear differential equation can be solved by quadratures if and only if its differential Galois group is connected and solvable. Unfortunately it is hard to tell exactly what they proved as the concept of being "solvable by quadratures" is not defined precisely or used consistently in their papers. Kolchin (1946, 1948) gave precise definitions of the necessary concepts and proved a rigorous version of this theorem.

Kolchin (1952) extended Picard–Vessiot theory to partial differential fields (with several commuting derivations).

Kovacic (1986) described an algorithm for deciding whether second order homogeneous linear equations can be solved by quadratures, known as Kovacic's algorithm.

Picard–Vessiot extensions and rings

An extension F ⊆ K of differential fields is called a Picard–Vessiot extension if all constants are in F and K can be generated by adjoining the solutions of a homogeneous linear ordinary differential polynomial.

A Picard–Vessiot ring R over the differential field F is a differential ring over F that is simple (no differential ideals other than 0 and R) and generated as a k-algebra by the coefficients of A and 1/det(A), where A is an invertible matrix over F such that B = A/A has coefficients in F. (So A is a fundamental matrix for the differential equation y = By.)

Liouvillian extensions

An extension F ⊆ K of differential fields is called Liouvillian if all constants are in F, and K can be generated by adjoining a finite number of integrals, exponential of integrals, and algebraic functions. Here, an integral of an element a is defined to be any solution of y = a, and an exponential of an integral of a is defined to be any solution of y = ay.

A Picard–Vessiot extension is Liouvillian if and only if the identity component of its differential Galois group is solvable (Kolchin 1948, p. 38, van der Put & Singer 2003, Theorem 1.39). More precisely, extensions by algebraic functions correspond to finite differential Galois groups, extensions by integrals correspond to subquotients of the differential Galois group that are 1-dimensional and unipotent, and extensions by exponentials of integrals correspond to subquotients of the differential Galois group that are 1-dimensional and reductive (tori).

Sources

Read other articles:

2015 French filmThe Boss's DaughterTheatrical release posterLa Fille du patronDirected byOlivier LoustauWritten byOlivier Loustau Bérénice AndréAgnès CaffinProduced byLisa Azuelos Julie Gayet Nadia Turincev Julien MadonStarringChrista Theret Olivier LoustauCinematographyCrystel FournierEdited byCamille ToubkisMusic byFixiProductioncompaniesRouge International Bethsabée MuchoDistributed byWild Bunch DistributionRelease dates 14 November 2015 (2015-11-14) (Sarlat) 6 ...

 

Pour les articles homonymes, voir Louise Michel (homonymie) et Michel. Louise MichelLouise Michel vers 1880.BiographieNaissance 29 mai 1830Vroncourt-la-CôteDécès 9 janvier 1905 (à 74 ans)MarseilleSépulture Cimetière de Levallois-Perret (depuis le 22 janvier 1905)Nom de naissance Clémence Louise MichelPseudonymes Enjolras, La Vierge rougeNationalité françaiseActivités Enseignante, communarde, anarchiste, femme politique, journaliste, pédagogue, femme de lettres, poétesse, éc...

 

Shiseido Company, LimitedNama asli株式会社資生堂Nama latinKabushiki-gaisha ShiseidōJenisPerseroan terbatas (K.K.)Kode emitenTYO: 4911ISINJP3351600006IndustriBarang konsumenDidirikan1872KantorpusatChūō, Tokyo, JepangWilayah operasiSeluruh duniaTokohkunciMasahiko Uotani (Presiden dan CEO)[1]ProdukKosmetikPendapatan ¥1,094.83 miliar (FY2018)[2]Laba bersih ¥61.403 miliar (FY2018)Karyawan33,356 (2013)AnakusahaBare EscentualsBeaute Prestige InternationalNARS CosmeticsSit...

Toray Pan Pacific Open 1984 Sport Tennis Data 10 dicembre - 16 dicembre Edizione 9a Superficie Sintetico indoor Campioni Singolare Manuela Maleeva Doppio Claudia Kohde Kilsch / Helena Suková 1983 1985 Il Toray Pan Pacific Open 1984 è stato un torneo di tennis giocato sul sintetico indoor. È stata la 9ª edizione del Toray Pan Pacific Open, che fa parte del Virginia Slims World Championship Series 1984. Si è giocato al Tokyo Metropolitan Gymnasium di Tokyo, in Giappone, dal 10 al 16 dicem...

 

Смута года Дзинсин Дата 27 июля — 24 августа 672 Место регион Кинки, Япония Причина смерть Императора Тэндзи, борьба за престол Итог победа принца Оама Противники принц Оама принц Отомо Силы сторон неизвестно неизвестно Потери неизвестно неизвестно  Медиафайлы на Викиск...

 

1993 film Ripa Hits the SkidsOriginal Finnish film posterDirected byChristian LindbladWritten byChristian LindbladStarringSam HuberCinematographyIlkka RuuhijärviRelease date 5 February 1993 (1993-02-05) Running time80 minutesCountryFinlandLanguageFinnish Ripa Hits the Skids (Finnish: Ripa ruostuu) is a 1993 Finnish comedy film directed by Christian Lindblad. It tells the story of Ripa, a young film director whose life seems to be going downhill all the time. Ripa, in debt and ...

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Sybra patrua Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Subfamili: Lamiinae Tribus: Apomecynini Genus: Sybra Spesies: Sybra patrua Sybra patrua adalah spesies kumbang tanduk panjang yang berasal dari famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Sybra, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pad...

 

City in Washington, United StatesBlack Diamond, WashingtonCityCity of Black DiamondTop Works at Mine 11, Black Diamond, ca. 1915.Location of Black Diamond, WashingtonCoordinates: 47°19′4″N 122°0′53″W / 47.31778°N 122.01472°W / 47.31778; -122.01472CountryUnited StatesStateWashingtonCountyKingEstablishedmid-1880sIncorporatedFebruary 19, 1959Government • TypeMayor–council[1] • MayorCarol Benson[1]Area[2] ...

Pour les articles homonymes, voir Traité de Washington, FNI et INF. Traité sur les forces nucléaires à portée intermédiaire (FNI) Le secrétaire du Parti communiste Mikhaïl Gorbatchev (à gauche) et le président américain Ronald Reagan (à droite) signent l'INF le 8 décembre 1987 à la Maison-Blanche. Données clés Type de traité Traité de contrôle et de limitation des armements (traité bilatéral) Langues Anglais et Russe Données clés Signé 8 décembre 1987Washington D.C. ...

 

Archaic Chinese form of execution A prisoner is executed on a wooden bench with a large blade. Waist chop or waist cutting (simplified Chinese: 腰斩; traditional Chinese: 腰斬; pinyin: Yāo zhǎn), also known as cutting in two at the waist,[1] was a form of execution used in ancient China.[2] As its name implies, it involved the condemned being sliced in two at the waist by an executioner. History Waist chopping first appeared during the Zhou dynasty (c. 1046...

 

Government agency in Tennessee, United States Tennessee Department of Children's ServicesThe administrative headquarters of TDCS in NashvilleChild protective services agency overviewFormedApril 1996 (1996-04)TypeState agencyJurisdictionGovernment of TennesseeHeadquarters315 Deaderick Street, 10th floor, UBS Tower, Nashville, Tennessee 3723836°09′57″N 86°46′47″W / 36.1659°N 86.7796°W / 36.1659; -86.7796Employees4,200[1]Annual budget$991.3 m...

Disambiguazione – Se stai cercando altri significati, vedi Vincenzo Bellini (disambigua). Vincenzo Bellini Vincenzo Salvatore Carmelo Francesco Bellini (Catania, 3 novembre 1801 – Puteaux, 23 settembre 1835) è stato un compositore italiano, tra i più celebri operisti dell'Ottocento. Gran parte di ciò che è noto della vita di Bellini e della sua attività di musicista proviene da lettere scritte al suo amico Francesco Florimo, incontrato come compagno di studi a Napoli. Considerato, a...

 

Canadian soccer team Football clubFull nameLondon City Soccer ClubNickname(s)CityFounded14 February 1973; 45 years agoStadiumMilton Community Sports Park Milton, OntarioCapacity5,000OwnerJasmin HalkićCoachIvan JevticLeagueCanadian Academy of Soccer League2019Regular season: 4thWebsiteClub website Home colours Away colours London City Soccer Club is a Canadian soccer team founded in 1973. The team is currently a member of the Canadian Academy of Soccer League. The team plays their home games ...

 

Inlet of Lake Superior in Wisconsin, USA Satellite image of Chequamegon Bay Chequamegon Bay (/ʃəˈwɑːməɡən/ shə-WAH-mə-gən)[1] is an inlet of Lake Superior in Ashland and Bayfield counties in the extreme northern part of Wisconsin. History A Native American village, known as Chequamegon, developed here in the mid-17th century. It was developed by refugee Petun, Huron, and Ottawa, who were fleeing the Beaver Wars and Iroquois invasions from the East after 1649. Later, Ojibwe ...

Bagian dari seriGereja Katolik menurut negara Afrika Afrika Selatan Afrika Tengah Aljazair Angola Benin Botswana Burkina Faso Burundi Chad Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Guinea Khatulistiwa Jibuti Kamerun Kenya Komoro Lesotho Liberia Libya Madagaskar Malawi Mali Maroko Mauritania Mauritius Mesir Mozambik Namibia Niger Nigeria Pantai Gading Republik Demokratik Kongo Republik Kongo Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland ...

 

Order of fishes SyngnathiformesTemporal range: Santonian–present[1] PreꞒ Ꞓ O S D C P T J K Pg N Trumpetfish (Aulostomus maculatus: Aulostomidae), head in natural pose Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii (unranked): Acanthomorpha Superorder: Acanthopterygii Clade: Percomorpha Order: Syngnathiformes Type species Syngnathus acusLinnaeus, 1758 Families See text The Syngnathiformes /ˈsɪŋ(ɡ)nəθɪfɔːrmiːz/ are an...

 

مهدي زرقان   معلومات شخصية الميلاد 15 يوليو 1999 (العمر 25 سنة)كليرمون فيران[1]  الطول 1.75 م (5 قدم 9 بوصة) مركز اللعب وسط الجنسية فرنسا الجزائر  معلومات النادي النادي الحالي أوفي كريت(معارًا من جيروندان بوردو) الرقم 90 المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2017–2019 ...

الإشعاع الشمسي في البرتغال في نهاية عام 2013، وصلت السعة الكلية للطاقة الشمسية في البرتغال إلى حوالي 277.9 ميجاوات[1]، لتصبح السعة التراكمية تقريبا 437 جيجاوات، موفرة بذلك الكهرباء لأكثر من 166500 منزل وموفرة بذلك ما يقرب من 107074 طن من انبعاثات ثاني أكسيد الكربون. كما بلغت نسبة ا...

 

Cet article concerne la région géographique. Pour le comitat de Croatie, voir Comitat de Vukovar-Syrmie. Pour le district de Voïvodine, voir Syrmie (district). La Syrmie, Срем (Srem) en alphabet serbe cyrillique et latin, Srijem en croate, Szerém ou Szerémség en hongrois, Syrmien en allemand, Syrmia ou Sirmium en latin, est une ancienne province historique de Hongrie-Croatie, située entre le Danube et la Save, du confluent du Danube avec la Drave jusqu'à son confluent avec la...