Peracetic acid (also known as peroxyacetic acid, or PAA) is an organic compound with the formula CH3CO3H. This peroxy acid is a colorless liquid with a characteristic acrid odor reminiscent of acetic acid. It can be highly corrosive.
Peracetic acid is a weaker acid than the parent acetic acid, with a pKa of 8.2.[2]
In the presence of a strong acid catalyst, such as sulfuric acid, acetic acid and hydrogen peroxide produce peracetic acid:[3]
H2O2 + CH3CO2H ⇌ CH3CO3H + H2O
However, in concentrations (3-6%) of vinegar and hydrogen peroxide marketed for household use, mixing without a strong acid catalyst will not form peracetic acid.
As an alternative, acetyl chloride and acetic anhydride can be used to generate a solution of the acid with lower water content.
Peracetic acid is always sold in solution as a mixture with acetic acid and hydrogen peroxide to maintain its stability. The concentration of the acid as the active ingredient can vary.
Uses
The United States Environmental Protection Agency first registered peracetic acid as an antimicrobial in 1986 for indoor use on hard surfaces. Use sites include agricultural premises, food establishments, medical facilities, and home bathrooms. Peracetic acid is also registered for use in dairy and cheese processing plants, on food processing equipment, and in pasteurizers in breweries, wineries, and beverage plants.[7] It is also applied for the disinfection of medical supplies, to prevent biofilm formation in pulp industries, and as a water purifier and disinfectant. Peracetic acid can be used as a cooling tower water disinfectant, where it prevents biofilm formation and effectively controls Legionella bacteria. Nu-Cidex is the trade name for a brand of antimicrobial peracetic acid.[8]
In the European Union, peroxyacetic acid was reported by the EFSA after submission in 2013 by the US Department of Agriculture.[9]
Decontamination kits for cleaning fentanyl analogues from surfaces (as used by many police forces, amongst others) often contain solid peracetyl borate, which mixes with water to produce peracetic acid.[10]
Epoxidation
Although less active than more acidic peracids (e.g., m-CPBA), peracetic acid in various forms is used for the epoxidation of various alkenes (Prilezhaev reaction). Useful applications are for unsaturated fats, synthetic and natural rubbers, and some natural products such as pinene. A variety of factors affect the amount of free acid or sulfuric acid (used to prepare the peracid).[11]
The concentration at which the general population will experience transient and reversible problems, such as notable discomfort, irritation, or certain asymptomatic non-sensory effects.
0.52
0.17
2
The concentration that results in irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
1.6
0.52
3
The concentration that results in life-threatening health effects or death.
^Lynam, P. A.; Babb, J. R.; Fraise, A. P. (1995). "Comparison of the mycobactericidal activity of 2% alkaline glutaraldehyde and 'Nu-Cidex' (0.35% peracetic acid)". J. Hosp. Infect.30 (3): 237–240. doi:10.1016/s0195-6701(95)90322-4. PMID8522783.