Per H. Enflo (Swedish:[ˈpæːrˈěːnfluː]; born 20 May 1944) is a Swedish mathematician working primarily in functional analysis, a field in which he solved problems that had been considered fundamental. Three of these problems had been open for more than forty years:[1]
At Stockholm University, Hans Rådström suggested that Enflo consider Hilbert's fifth problem in the spirit of functional analysis.[4] In two years, 1969–1970, Enflo published five papers on Hilbert's fifth problem; these papers are collected in Enflo (1970), along with a short summary. Some of the results of these papers are described in Enflo (1976) and in the last chapter of Benyamini and Lindenstrauss.
However, such embedding techniques have limitations, as shown by Enflo's (1969) theorem:[5]
For every , the Hamming cube cannot be embedded with "distortion " (or less) into -dimensional Euclidean space if . Consequently, the optimal embedding is the natural embedding, which realizes as a subspace of -dimensional Euclidean space.[6]
This theorem, "found by Enflo [1969], is probably the first result showing an unbounded distortion for embeddings into Euclidean spaces. Enflo considered the problem of uniform embeddability among Banach spaces, and the distortion was an auxiliary device in his proof."[7]
The basis problem was posed by Stefan Banach in his book, Theory of Linear Operators. Banach asked whether every separable Banach space has a Schauder basis.
A Schauder basis or countable basis is similar to the usual (Hamel) basis of a vector space; the difference is that for Hamel bases we use linear combinations that are finite sums, while for Schauder bases they may be infinite sums. This makes Schauder bases more suitable for the analysis of infinite-dimensional topological vector spaces including Banach spaces.
Schauder bases were described by Juliusz Schauder in 1927.[10][11] Let V denote a Banach space over the fieldF. A Schauder basis is a sequence (bn) of elements of V such that for every element v ∈ V there exists a unique sequence (αn) of elements in F so that
Banach and other Polish mathematicians would work on mathematical problems at the Scottish Café. When a problem was especially interesting and when its solution seemed difficult, the problem would be written down in the book of problems, which soon became known as the Scottish Book. For problems that seemed especially important or difficult or both, the problem's proposer would often pledge to award a prize for its solution.
On 6 November 1936, Stanisław Mazur posed a problem on representing continuous functions. Formally writing down problem 153 in the Scottish Book, Mazur promised as the reward a "live goose", an especially rich price during the Great Depression and on the eve of World War II.
Fairly soon afterwards, it was realized that Mazur's problem was closely related to Banach's problem on the existence of Schauder bases in separable Banach spaces. Most of the other problems in the Scottish Book were solved regularly. However, there was little progress on Mazur's problem and a few other problems, which became famous open problems to mathematicians around the world.[12]
Grothendieck's formulation of the approximation problem
In a long monograph, Grothendieck proved that if every Banach space had the approximation property, then every Banach space would have a Schauder basis. Grothendieck thus focused the attention of functional analysts on deciding whether every Banach space have the approximation property.[13]
Enflo's solution
In 1972, Per Enflo constructed a separable Banach space that lacks the approximation property and a Schauder basis.[14] In 1972, Mazur awarded a live goose to Enflo in a ceremony at the Stefan Banach Center in Warsaw; the "goose reward" ceremony was broadcast throughout Poland.[15]
Enflo proposed a solution to the invariant subspace problem in 1975, publishing an outline in 1976. Enflo submitted the full article in 1981 and the article's complexity and length delayed its publication to 1987[16] Enflo's long "manuscript had a world-wide circulation among mathematicians"[17] and some of its ideas were described in publications besides Enflo (1976).[18][19] Enflo's works inspired a similar construction of an operator without an invariant subspace for example by Beauzamy, who acknowledged Enflo's ideas.[16]
An essential idea in Enflo's construction was "concentration of polynomials at low degrees": For all positive integers and , there exists such that for all homogeneous polynomials and of degrees and (in variables), then
where denotes the sum of the absolute values of the coefficients of . Enflo proved that does not depend on the number of variables . Enflo's original proof was simplified by Montgomery.[21]
where we use the following notation:
if , we write and
and
The most remarkable property of this norm is the Bombieri inequality:
Let be two homogeneous polynomials respectively of degree and with variables, then, the following inequality holds:
In the above statement, the Bombieri inequality is the left-hand side inequality; the right-hand side inequality means that the Bombieri norm is a norm of the algebra of polynomials under multiplication.
The Bombieri inequality implies that the product of two polynomials cannot be arbitrarily small, and this lower-bound is fundamental in applications like polynomial factorization (or in Enflo's construction of an operator without an invariant subspace).
Today, all humans belong to one population of Homo sapiens sapiens, which is individed by species barrier. However, according to the "Out of Africa" model this is not the first species of hominids: the first species of genus Homo, Homo habilis, evolved in East Africa at least 2 Ma, and members of this species populated different parts of Africa in a relatively short time. Homo erectus evolved more than 1.8 Ma, and by 1.5 Ma had spread throughout the Old World.
Anthropologists have been divided as to whether current human population evolved as one interconnected population (as postulated by the Multiregional Evolution hypothesis), or evolved only in East Africa, speciated, and then migrating out of Africa and replaced human populations in Eurasia (called the "Out of Africa" Model or the "Complete Replacement" Model).
Neanderthals and modern humans coexisted in Europe for several thousand years, but the duration of this period is uncertain.[26] Modern humans may have first migrated to Europe 40–43,000 years ago.[27] Neanderthals may have lived as recently as 24,000 years ago in refugia on the south coast of the Iberian peninsula such as Gorham's Cave.[28][29] Inter-stratification of Neanderthal and modern human remains has been suggested,[30] but is disputed.[31]
A child prodigy in both music and mathematics, Enflo won the Swedish competition for young pianists at age 11 in 1956, and he won the same competition in 1961.[37] At age 12, Enflo appeared as a soloist with the Royal Opera Orchestra of Sweden. He debuted in the Stockholm Concert Hall in 1963. Enflo's teachers included Bruno Seidlhofer, Géza Anda, and Gottfried Boon (who himself was a student of Arthur Schnabel).[36]
Enflo performs regularly around Kent and in a Mozart series in Columbus, Ohio (with the Triune Festival Orchestra). His solo piano recitals have appeared on the Classics Network of the radio station WOSU, which is sponsored by Ohio State University.[36]
^Per Enflo: A counterexample to the approximation problem in Banach spaces.Acta Mathematica vol. 130, no. 1, Juli 1973
^*Enflo, Per (1976). "On the invariant subspace problem in Banach spaces". Séminaire Maurey--Schwartz (1975--1976) Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14-15. Centre Math., École Polytech., Palaiseau. p. 7. MR0473871.
^Rådström had himself published several articles on Hilbert's fifth problem from the point of view of semigroup theory.
Rådström was also the (initial) advisor of Martin Ribe, who wrote a thesis on metric linear spaces that need not be locally convex; Ribe also used a few of Enflo's ideas on metric geometry, especially "roundness", in obtaining independent results on uniform and Lipschitzembeddings (Benyamini and Lindenstrauss). This reference also describes results of Enflo and his students on such embeddings.
^Enflo's "sensation" is discussed on page 287 in Pietsch, Albrecht (2007). History of Banach spaces and linear operators. Boston, MA: Birkhäuser Boston, Inc. pp. xxiv+855 pp. ISBN978-0-8176-4367-6. MR2300779. Introductions to Enflo's solution were written by Halmos, by Johnson, by Kwapień, by Lindenstrauss and Tzafriri, by Nedevski and Trojanski, and by Singer.
^Page 401 in Foiaş, Ciprian; Jung, Il Bong; Ko, Eungil; Pearcy, Carl (2005). "On quasinilpotent operators. III". Journal of Operator Theory. 54 (2): 401–414.. Enflo's method of ("forward") "minimal vectors" is also noted in the review of this research article by Gilles Cassier in Mathematical Reviews: MR2186363
Enflo's method of minimal vector is described in greater detail in a survey article on the invariant subspace problem by Enflo and Victor Lomonosov, which appears in the Handbook of the Geometry of Banach Spaces (2001).
^The model for the evolution of human population genetics (developed by Enflo and his coauthors) was reported on the cover page of a major Swedish newspaper.Jensfelt, Annika (14 January 2001). "Ny brandfackla tänder debatten om manniskans ursprung". Svenska Dagbladet (in Swedish): 1.
^Finlayson, C., F. G. Pacheco, J. Rodriguez-Vidal, D. A. Fa, J. M. G. Lopez, A. S. Perez, G. Finlayson, E. Allue, J. B. Preysler, I. Caceres, J. S. Carrion, Y. F. Jalvo, C. P. Gleed-Owen, F. J. J. Espejo, P. Lopez, J. A. L. Saez, J. A. R. Cantal, A. S. Marco, F. G. Guzman, K. Brown, N. Fuentes, C. A. Valarino, A. Villalpando, C. B. Stringer, F. M. Ruiz, and T. Sakamoto. 2006. Late survival of Neanderthals at the southernmost extreme of Europe. Nature advanced online publication.
Pääbo, Svante et alia. "Genetic analyses from ancient DNA." Annu. Rev. Genet. 38, 645–679 (2004).
^Jensfelt, Annika (14 January 2001). "Ny brandfackla tänder debatten om manniskans ursprung". Svenska Dagbladet (in Swedish): 1.
^"'Per Enflo's theory is extremely well thought-out and of the highest significance'...said American anthropologist Milford Wolpoff, professor at the University of Michigan." (Page 14 in Jensfelt, Annika (14 January 2001). "Ny brandfackla tänder debatten om manniskans ursprung". Svenska Dagbladet (in Swedish): 14–15.)
Enflo, Per. (1970) Investigations on Hilbert's fifth problem for non locally compact groups (Stockholm University). Enflo's thesis contains reprints of exactly five papers:
Enflo, Per. 1976. Uniform homeomorphisms between Banach spaces. Séminaire Maurey-Schwartz (1975—1976), Espaces, , applications radonifiantes et géométrie des espaces de Banach, Exp. No. 18, 7 pp. Centre Math., École Polytech., Palaiseau. MR0477709 (57 #17222) [Highlights of papers on Hilbert's fifth problem and on independent results of Martin Ribe, another student of Hans Rådström]
Enflo, Per (1976). "On the invariant subspace problem in Banach spaces"(PDF). Séminaire Maurey--Schwartz (1975--1976) Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14–15. Centre Math., École Polytech., Palaiseau. pp. 1–7. MR0473871.
Beauzamy, Bernard; Enflo, Per; Wang, Paul (October 1994). "Quantitative Estimates for Polynomials in One or Several Variables: From Analysis and Number Theory to Symbolic and Massively Parallel Computation". Mathematics Magazine. 67 (4): 243–257. JSTOR2690843. (accessible to readers with undergraduate mathematics)
P. Enflo, John D. Hawks, M. Wolpoff. "A simple reason why Neanderthal ancestry can be consistent with current DNA information". American Journal Physical Anthropology, 2001
Enflo, Per; Lomonosov, Victor (2001). "Some aspects of the invariant subspace problem". Handbook of the geometry of Banach spaces. Vol. I. Amsterdam: North-Holland. pp. 533–559.
Paul R. Halmos, "Has progress in mathematics slowed down?" Amer. Math. Monthly 97 (1990), no. 7, 561–588. MR1066321
William B. Johnson "Complementably universal separable Banach spaces" in Robert G. Bartle (ed.), 1980 Studies in functional analysis, Mathematical Association of America.
Kwapień, S. "On Enflo's example of a Banach space without the approximation property". Séminaire Goulaouic-Schwartz 1972—1973: Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 8, 9 pp. Centre de Math., École Polytech., Paris, 1973. MR407569
Lindenstrauss, Joram and Benyamini, Yoav. Geometric nonlinear functional analysis Colloquium publications, 48. American Mathematical Society.
R. Daniel Mauldin, ed. (1981). The Scottish Book: Mathematics from the Scottish Café (Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, Tex., May 1979). Boston, Mass.: Birkhäuser. pp. xiii+268 pp. (2 plates). ISBN3-7643-3045-7. MR0666400.
Nedevski, P.; Trojanski, S. (1973). "P. Enflo solved in the negative Banach's problem on the existence of a basis for every separable Banach space". Fiz.-Mat. Spis. Bulgar. Akad. Nauk. 16 (49): 134–138. MR0458132.
Singer, Ivan. Bases in Banach spaces. II. Editura Academiei Republicii Socialiste România, Bucharest; Springer-Verlag, Berlin-New York, 1981. viii+880 pp. ISBN3-540-10394-5. MR610799