One of the strengths of this code is that it handles non-periodic boundary conditions in a natural way, without the use of super-cells, but can equally well handle periodic and partially periodic boundary conditions.[3][4][5] Another key strength is that it is readily amenable to efficient massive parallelization, making it highly effective for very large systems.[6]
^Kronik, Leeor; Makmal, Adi; Tiago, Murilo L.; Alemany, M. M. G.; Jain, Manish; Huang, Xiangyang; Saad, Yousef; Chelikowsky, James R. (2006). "PARSEC – the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structures". Physica Status Solidi B. 243 (5): 1063–1079. Bibcode:2006PSSBR.243.1063K. doi:10.1002/pssb.200541463. ISSN0370-1972. S2CID122821136.
^Natan, Amir; Benjamini, Ayelet; Naveh, Doron; Kronik, Leeor; Tiago, Murilo L.; Beckman, Scott P.; Chelikowsky, James R. (2008-08-12). "Real-space pseudopotential method for first principles calculations of general periodic and partially periodic systems". Physical Review B. 78 (7): 075109. Bibcode:2008PhRvB..78g5109N. doi:10.1103/physrevb.78.075109. ISSN1098-0121. S2CID123147721.