Pólya–Szegő inequality

In mathematical analysis, the Pólya–Szegő inequality (or Szegő inequality) states that the Sobolev energy of a function in a Sobolev space does not increase under symmetric decreasing rearrangement.[1] The inequality is named after the mathematicians George Pólya and Gábor Szegő.

Mathematical setting and statement

Given a Lebesgue measurable function the symmetric decreasing rearrangement is the unique function such that for every the sublevel set is an open ball centred at the origin that has the same Lebesgue measure as

Equivalently, is the unique radial and radially nonincreasing function, whose strict sublevel sets are open and have the same measure as those of the function .

The Pólya–Szegő inequality states that if moreover then and

Applications of the inequality

The Pólya–Szegő inequality is used to prove the Rayleigh–Faber–Krahn inequality, which states that among all the domains of a given fixed volume, the ball has the smallest first eigenvalue for the Laplacian with Dirichlet boundary conditions. The proof goes by restating the problem as a minimization of the Rayleigh quotient.[1]

The isoperimetric inequality can be deduced from the Pólya–Szegő inequality with .

The optimal constant in the Sobolev inequality can be obtained by combining the Pólya–Szegő inequality with some integral inequalities.[2][3]

Equality cases

Since the Sobolev energy is invariant under translations, any translation of a radial function achieves equality in the Pólya–Szegő inequality. There are however other functions that can achieve equality, obtained for example by taking a radial nonincreasing function that achieves its maximum on a ball of positive radius and adding to this function another function which is radial with respect to a different point and whose support is contained in the maximum set of the first function. In order to avoid this obstruction, an additional condition is thus needed.

It has been proved that if the function achieves equality in the Pólya–Szegő inequality and if the set is a null set for Lebesgue's measure, then the function is radial and radially nonincreasing with respect to some point .[4]

Generalizations

The Pólya–Szegő inequality is still valid for symmetrizations on the sphere or the hyperbolic space.[5]

The inequality also holds for partial symmetrizations defined by foliating the space into planes (Steiner symmetrization)[6][7] and into spheres (cap symmetrization).[8][9]

There are also Pólya−Szegő inequalities for rearrangements with respect to non-Euclidean norms and using the dual norm of the gradient.[10][11][12]

Proofs of the inequality

Original proof by a cylindrical isoperimetric inequality

The original proof by Pólya and Szegő for was based on an isoperimetric inequality comparing sets with cylinders and an asymptotics expansion of the area of the area of the graph of a function.[1] The inequality is proved for a smooth function that vanishes outside a compact subset of the Euclidean space For every , they define the sets

These sets are the sets of points who lie between the domain of the functions and and their respective graphs. They use then the geometrical fact that since the horizontal slices of both sets have the same measure and those of the second are balls, to deduce that the area of the boundary of the cylindrical set cannot exceed the one of . These areas can be computed by the area formula yielding the inequality

Since the sets and have the same measure, this is equivalent to

The conclusion then follows from the fact that

Coarea formula and isoperimetric inequality

The Pólya–Szegő inequality can be proved by combining the coarea formula, Hölder’s inequality and the classical isoperimetric inequality.[2]

If the function is smooth enough, the coarea formula can be used to write

where denotes the –dimensional Hausdorff measure on the Euclidean space . For almost every each , we have by Hölder's inequality,

Therefore, we have

Since the set is a ball that has the same measure as the set , by the classical isoperimetric inequality, we have

Moreover, recalling that the sublevel sets of the functions and have the same measure,

and therefore,

Since the function is radial, one has

and the conclusion follows by applying the coarea formula again.

Rearrangement inequalities for convolution

When , the Pólya–Szegő inequality can be proved by representing the Sobolev energy by the heat kernel.[13] One begins by observing that

where for , the function is the heat kernel, defined for every by

Since for every the function is radial and radially decreasing, we have by the Riesz rearrangement inequality

Hence, we deduce that

References

  1. ^ a b c Pólya, George; Szegő, Gábor (1951). Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J.: Princeton University Press. ISBN 9780691079882. ISSN 0066-2313.
  2. ^ a b Talenti, Giorgio (1976). "Best constant in Sobolev inequality". Annali di Matematica Pura ed Applicata. 110 (1): 353–372. CiteSeerX 10.1.1.615.4193. doi:10.1007/BF02418013. ISSN 0373-3114. S2CID 16923822.
  3. ^ Aubin, Thierry (1976-01-01). "Problèmes isopérimétriques et espaces de Sobolev". Journal of Differential Geometry (in French). 11 (4): 573–598. doi:10.4310/jdg/1214433725. ISSN 0022-040X.
  4. ^ Brothers, John E.; Ziemer, William P. (1988). "Minimal rearrangements of Sobolev functions". Journal für die Reine und Angewandte Mathematik. 384: 153–179. ISSN 0075-4102.
  5. ^ Baernstein II, Albert (1994). "A unified approach to symmetrization". In Alvino, Angelo; Fabes, Eugenes; Talenti, Giorgio (eds.). Partial Differential Equations of Elliptic Type. Symposia Mathematica. Cambridge University Press. pp. 47–92. ISBN 9780521460484.
  6. ^ Kawohl, Bernhard (1985). Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics. Vol. 1150. Berlin Heidelberg: Springer. doi:10.1007/bfb0075060. ISBN 978-3-540-15693-2. ISSN 0075-8434.
  7. ^ Brock, Friedemann; Solynin, Alexander (2000). "An approach to symmetrization via polarization". Transactions of the American Mathematical Society. 352 (4): 1759–1796. doi:10.1090/S0002-9947-99-02558-1. ISSN 0002-9947.
  8. ^ Sarvas, Jukka (1972). Symmetrization of Condensers in N-space. Suomalainen Tiedeakatemia. ISBN 9789514100635.
  9. ^ Smets, Didier; Willem, Michel (2003). "Partial symmetry and asymptotic behavior for some elliptic variational problems". Calculus of Variations and Partial Differential Equations. 18 (1): 57–75. doi:10.1007/s00526-002-0180-y. ISSN 0944-2669. S2CID 119466691.
  10. ^ Angelo, Alvino; Vincenzo, Ferone; Guido, Trombetti; Pierre-Louis, Lions (1997). "Convex symmetrization and applications". Annales de l'Institut Henri Poincaré C (in French). 14 (2): 275. Bibcode:1997AIHPC..14..275A. doi:10.1016/S0294-1449(97)80147-3.
  11. ^ Van Schaftingen, Jean (2006). "Anisotropic symmetrization". Annales de l'Institut Henri Poincaré C. 23 (4): 539–565. Bibcode:2006AIHPC..23..539V. doi:10.1016/j.anihpc.2005.06.001.
  12. ^ Cianchi, Andrea (2007). "Symmetrization in Anisotropic Elliptic Problems". Communications in Partial Differential Equations. 32 (5): 693–717. doi:10.1080/03605300600634973. ISSN 0360-5302. S2CID 121383998.
  13. ^ Lieb, Elliott H.; Loss, Michael (2001-01-01). Analysis (2 ed.). American mathematical Society. ISBN 9780821827833. OCLC 468606724.

Read other articles:

Miss International 2023Tanggal26 Oktober 2023TempatYoyogi National Gymnasium ke-2, Shibuya, Tokyo, JepangPembawa acaraTetsuya BesshoRachel ChanPengisi acaraHarami-chanDaishi DancePeserta70Finalis/Semifinalis15DebutBangladeshLesothoPakistanTidak tampilBelarusHaitiHondurasItaliaJermanKenyaKepulauan Mariana UtaraNamibiaRumaniaSlovakiaTanjung VerdeTogoUzbekistanTampil kembaliAngolaBelandaCuraçaoEstoniaGhanaLituaniaMartinikMoldovaMyanmarPantai GadingSerbiaSri LankaTunisiaUgand...

 

Airport in Indianapolis, Indiana, U.S. For other uses, see Indianapolis Airport (disambiguation). Indianapolis International AirportIATA: INDICAO: KINDFAA LID: INDWMO: 72438SummaryAirport typePublicOwner/OperatorIndianapolis Airport AuthorityServesIndianapolisLocation7800 Col. H. Weir Cook Memorial DriveIndianapolis, Indiana, United StatesOpened1931; 93 years ago (1931)Hub forFedEx ExpressOperating base forAllegiant AirElevation AMSL797 ft / 243 mCoordinates39...

 

Catholic organization in West Virginia, US Canons Regular of the New JerusalemAbbreviationCRNJFormation22 June 2002FounderDaniel Augustine OppenheimerFounded atChesterfield, Missouri, USTypeInstitute of Consecrated LifeLocationCharles Town, West Virginia, USWebsitewww.canonsregular.com The Canons Regular of the New Jerusalem is a public association of the faithful[1] in the Catholic Church, founded in 2002 in the Diocese of La Crosse, Wisconsin, and currently located in Charles Town, ...

US State election 2018 United States House of Representatives election in Montana ← 2017 (special) November 6, 2018 (2018-11-06) 2020 →   Nominee Greg Gianforte Kathleen Williams Party Republican Democratic Popular vote 256,661 233,284 Percentage 50.9% 46.3% County resultsGianforte:      50–60%      60–70%      70–80%      80–90%Williams: &...

 

Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan Wikipedia. Gaya atau nada penulisan artikel ini tidak mengikuti gaya dan nada penulisan ensiklopedis yang diberlakukan di Wikipedia. Bantulah memperbaikinya berdasarkan panduan penulisan artikel. (Pelajari cara ...

 

Former Canadian political party (1917–1922) Unionist Party French: Parti unionisteCanadian political partyLeaderRobert Borden,Arthur MeighenFoundedOctober 10, 1917 (1917-10-10)Dissolved1922 (1922)Preceded byConservative PartyLiberal–UnionistMerged intoConservative PartyHeadquartersOttawa, OntarioIdeologyBritish imperialismConservatismLiberalismPolitical positionCentre to centre-rightPolitics of CanadaPolitical partiesElections The Unionist Party was a ce...

KAMAZ Naberezhnye ChelnyCalcio Segni distintiviUniformi di gara Casa Trasferta Colori sociali Bianco, blu Dati societariCittàNaberežnye Čelny Nazione Russia ConfederazioneUEFA Federazione RFU CampionatoPervaja Liga Fondazione1981 StadioKAMAZ(10 000 posti) PalmarèsSi invita a seguire il modello di voce Il Futbol'nyj klub KAMAZ Naberežnye Čelny (in russo Футбольный Клуб КАМАЗ Набережные Челны) o più semplicemente KAMAZ è una società calcistica rus...

 

Questa voce sugli argomenti militari statunitensi e Antartide è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti dei progetti di riferimento 1, 2. Gerald KetchumNascitaBellingham, 5 dicembre 1908 MortePlano, 22 agosto 1992 voci di militari presenti su Wikipedia Manuale Gerald Ketchum (Bellingham, 5 dicembre 1908 – Plano, 22 agosto 1992) è stato un militare statunitense. Comandante della Us Navy è stato responsabile della ...

 

Ion, and compounds containing the ion This article is about sulfur anion in general. For the organic compound also called sulfide, see thioether. For other uses, see Sulphide (disambiguation). Sulfide Names Systematic IUPAC name Sulfide(2−)[1] (additive), recommended nameSulfanediide (substitutive),[1] not common, rarely used, sometimes generated by automated nomenclature software in organic chemistry Identifiers CAS Number 18496-25-8 Y 3D model (JSmol) Interactive imag...

此條目需要补充更多来源。 (2021年7月4日)请协助補充多方面可靠来源以改善这篇条目,无法查证的内容可能會因為异议提出而被移除。致使用者:请搜索一下条目的标题(来源搜索:美国众议院 — 网页、新闻、书籍、学术、图像),以检查网络上是否存在该主题的更多可靠来源(判定指引)。 美國眾議院 United States House of Representatives第118届美国国会众议院徽章 众议院旗...

 

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)&#...

 

Pour les articles homonymes, voir Fabricius. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (décembre 2012). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ». En pratiqu...

Claudio Durigon Sottosegretario di Stato al Ministero del lavoro e delle politiche socialiIn caricaInizio mandato2 novembre 2022 Capo del governoGiorgia Meloni PredecessoreRossella AccotoTiziana Nisini Durata mandato13 giugno 2018 –5 settembre 2019 ContitolareClaudio Cominardi Capo del governoGiuseppe Conte PredecessoreFranca BiondelliLuigi Bobba SuccessoreStanislao Di PiazzaFrancesca Puglisi Sottosegretario di Stato al Ministero dell'economia e delle finanzeDurata m...

 

Italian alpine skier Nicole GiusNicole Gius, Semmering 2008Personal informationBorn (1980-11-16) 16 November 1980 (age 43)Silandro, ItalyOccupationAlpine skierHeight1.59 m (5 ft 3 in)Skiing careerDisciplinesPolyvalentClubC.S. EsercitoWorld Cup debut1996Retired2013OlympicsTeams2Medals0World ChampionshipsTeams6Medals0World CupSeasons18Podiums4 Nicole Gius (born 16 November 1980) is an Italian alpine skier. She was born in Schlanders, Italy. She competed at the 2002 Winter Ol...

 

Container woven of stiff fibres This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Basket – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this message) Edible mushrooms in a basket. Basket of Plums, painting by Pierre Dupuis. A basket is a container that is traditiona...

1995 historical novel by Pat Barker This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Ghost Road – news · newspapers · books · scholar · JSTOR (July 2017) (Learn how and when to remove this message) The Ghost Road First editionAuthorPat BarkerLanguageEnglishSeriesRegeneration TrilogyGenreWar novelPublishe...

 

كليوباترا الخامسة   معلومات شخصية تاريخ الميلاد سنة 100 ق م   تاريخ الوفاة سنة 57 ق م   مواطنة مصر القديمة  الزوج بطليموس الثاني عشر  الأولاد برينيكي الرابعةكليوباترا  الأب بطليموس العاشر  الأم برنيكي الثالثة  إخوة وأخوات بطليموس الحادي عشر،  وبطليموس ا...

 

Ukrainian footballer For other people named Radchenko, see Radchenko (disambiguation). In this name that follows Eastern Slavic naming customs, the patronymic is Olehovych and the family name is Radchenko . Artem Radchenko Personal informationFull name Artem Olehovych RadchenkoDate of birth (1995-01-02) 2 January 1995 (age 29)Place of birth Kharkiv, UkraineHeight 1.75 m (5 ft 9 in)Position(s) MidfielderTeam informationCurrent team FK TransinvestNumber 11Youth career200...

Thoetmosis IV Thutmose IV, Djehoetimes IV Beeld van graniet van Thoetmosis IV(ca. 1401-1391 v. Chr.), Louvre Farao van de 18e dynastie Periode ca. 1397-1388 v.Chr. Voorganger Amenhotep II Opvolger Amenhotep III Vader Amenhotep II Moeder Tiaa Namen van de farao in Egyptische hiërogliefen Serech of Horusnaam Nebtynaam Gouden Horusnaam Praenomen of troonnaam Nomen of geboortenaam   Portaal    Egyptologie Thoetmosis IV of Thoetmozes IV was een Egyptische koning uit de 18e dynasti...

 

Cet article est une ébauche concernant un écrivain français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Hugues de MontalembertBiographieNaissance 1955FranceNationalité françaiseActivités Écrivain, peintre, photographeFamille Famille de MontalembertFratrie Thibault de MontalembertAutres informationsGenre artistique RomanDistinction Prix Ève-Delacroix (1991)Blasonmodifier - modifier le code - modifier...