Orehoved
|
Read other articles:
Mayat Manusia Tollund dalam display di Museum Silkeborg Manusia Tollund merupakan mumi yang ditemukan di Denmark dan terawetkan secara alami. Mumi ini dahulu seorang pria yang hidup pada abad ke-4 sebelum Masehi di Skandinavia pada Zaman Besi Pra-Romawi.[1] Manusia Tollund ditemukan pada tahun 1950 di rawa-rawa gambut di Semenanjung Jutland, Denmark, yang mengawetkan mayatnya. Temuan semacam ini lebih dikenal dengan nama manusia rawa.[2] Fitur wajah Manusia Tollund yang sangat...
Paroki Maria Ratu Semesta Alam, Sungai DurianGereja Katolik Maria Ratu Semesta Alam - Sungai DurianLokasiJl. MT Haryono, Sungai Durian,Kapuas Kanan Hulu Kota Sintang, Kalimantan Barat 78614Jumlah anggota/umat3.538 jiwa (2013)[1]SejarahDidirikanTahun 1979DedikasiMaria Ratu Semesta AlamAdministrasiKeuskupanKeuskupan SintangJumlah Imam2Imam yang bertugasPastor Agustinus Xaverius Bahang, Pr.[1]Imam rekanPastor Patrisius Piki, Pr.[1]ParokialJumlah kapelKapel St. Yohanes Pau...
Hindu temple in Kerala, India Punkunnam Siva Templeപുങ്കുന്നം ശിവ ക്ഷേത്രംMain building of TempleReligionAffiliationHinduismDistrictThrissurDeityShiva (പരമശിവന്)FestivalsMaha ShivaratriLocationLocationPunkunnam, ThrissurStateKeralaCountry IndiaSiva Temple Punkunnam, Thrissur, KeralaGeographic coordinates10°32′04″N 76°12′10″E / 10.534539°N 76.202795°E / 10.534539; 76.202795ArchitectureTypeKera...
العلاقات الرواندية الليتوانية رواندا ليتوانيا رواندا ليتوانيا تعديل مصدري - تعديل العلاقات الرواندية الليتوانية هي العلاقات الثنائية التي تجمع بين رواندا وليتوانيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه ...
This article is about the caucus for Hispanic Republican members of Congress. For its Democratic counterpart, see Congressional Hispanic Caucus. Congressional Hispanic Conference Co-ChairsMario Díaz-BalartTony GonzalesFounded2003; 21 years ago (2003)HeadquartersWashington, D.C.National affiliationRepublican PartySeats in the House15 / 435 (plus 3 non-voting) Seats in the House Republican Conference15 / 218 (plus 3 non-voting) Seats in the Senate2 / 100 Caucus in the U.S. Co...
American politician Amos EllmakerAttorney General of PennsylvaniaIn officeMay 6, 1828 – August 17, 1829GovernorJohn Andrew ShulzePreceded byCalvin BlytheSucceeded byPhilip S. MarkleyIn officeDecember 21, 1816 – July 7, 1819GovernorSimon SnyderWilliam FindlayPreceded byJared IngersollSucceeded byThomas Sergeant Personal detailsBorn(1787-02-02)February 2, 1787Leacock Township, Pennsylvania, U.S.DiedNovember 28, 1851(1851-11-28) (aged 64)Lancaster, Pennsylvania, U.S.Po...
Italian prelate of the Catholic Church His EminenceEugenio Dal CorsoP.S.D.P.Bishop Emeritus of BenguelaChurchCatholic ChurchDioceseBenguelaAppointed18 February 2008Term ended26 March 2018PredecessorOscar Lino Lopes Fernandes BragaSuccessorAntónio Francisco Jaca S.V.D.Other post(s)Cardinal-Priest of Sant'Anastasia (2019-)OrdersOrdination7 July 1963Consecration3 March 1996by Félix del Blanco PrietoCreated cardinal5 October 2019by Pope FrancisRankCardinal-PriestPersonal detailsBorn (1939-...
Pour les articles homonymes, voir Flore (homonymie) et Flora. (8) Flore (8) Flora Modèle 3D de (8) Flore basé sur l'inversion de sa courbe de lumière. Caractéristiques orbitalesÉpoque 14 juillet 2004 (JJ 2453200,5)Établi sur 2 926 observ. couvrant 63341 jours (U = 0) Demi-grand axe (a) 329,313 × 106 km(2,201 ua) Périhélie (q) 277,806 × 106 km(1,857 ua) Aphélie (Q) 380,821 × 106 km(2,546 ua) Excentricité (e) 0,156 Période de révolution (Prév) 1 192,956 j(3,27 a)...
Type of armed combat sport This article is about the sport. For the computing process, see Fencing (computing). For the act of building a fence, see Fence. For other uses, see Fence (disambiguation). FencingFinal of the Challenge Réseau Ferré de France–Trophée Monal 2012, épée world cup tournament in Paris.Highest governing bodyFIEFirst playedBetween the 17th and 19th centuries EuropeCharacteristicsContactSemi-contactTeam membersSingles or Team RelayMixed-sexYes, separateTypeindo...
この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「�...
Minor battle in the reconquista Battle of MartosPart of the Spanish ReconquistaThe Nasrid Kingdom of GranadaDate21 October 1275LocationTorredonjimeno, SpainResult Moorish victoryBelligerents Crown of Castile Marinid sultanateKingdom of GranadaCommanders and leaders Sancho of Aragon, Archbishop of Toledo † Abenjor AtalìUzménStrength (Unknown) (Unknown)Casualties and losses (Very large) (Unknown)vteBattles in the Reconquista 8th century Covadonga 1st Roncevaux Pass Burbia River Lutos Las Ba...
2016年美國總統選舉 ← 2012 2016年11月8日 2020 → 538個選舉人團席位獲勝需270票民意調查投票率55.7%[1][2] ▲ 0.8 % 获提名人 唐納·川普 希拉莉·克林頓 政党 共和黨 民主党 家鄉州 紐約州 紐約州 竞选搭档 迈克·彭斯 蒂姆·凱恩 选举人票 304[3][4][註 1] 227[5] 胜出州/省 30 + 緬-2 20 + DC 民選得票 62,984,828[6] 65,853,514[6]...
У этого термина существуют и другие значения, см. Гайавата (значения). Гайаватаонодага: Haiëñ'wa’tha Дата рождения неизвестно Место рождения неизвестно Дата смерти неизвестно Род деятельности племенной вождь, один из основателей Конфедерации Ирокезов Медиафайл�...
Ghanaian stew Kontomire Stew with eggs and plantain Kontomire stew is a stew made from cocoyam leaves (known in the Akan language as kontomire), commonly prepared in the home and very popular in Ghanaian cuisine.[1] In Ghana, kontomire stew is served with variety of dishes,[2][3] including steamed rice, cooked yam and plantain.[4] Its English designation palava sauce is said to originate from the people of Elmina.[5][6] Ingredients Preparing kon...
Miss MiseryArtistaElliott Smith Autore/iElliott Smith GenereIndie rock Edito daCapitol Records Pubblicazione originaleIncisioneGood Will Hunting: Music from the Miramax Motion Picture Data17 dicembre 1997 Durata3 min : 15 s Miss Misery è un brano musicale del cantautore statunitense Elliott Smith. Apparsa nei titoli di coda e nella colonna sonora del film Will Hunting - Genio ribelle del 1997, la canzone fu tra quelle nominate all'Oscar durante la premiazione del 1998[1]. Un...
Dutch footballer (born 1994) Andries Noppert Noppert with Heerenveen in 2023.Personal informationFull name Andries Noppert[1]Date of birth (1994-04-07) 7 April 1994 (age 30)[2]Place of birth Heerenveen, NetherlandsHeight 2.03 m (6 ft 8 in)[3]Position(s) GoalkeeperTeam informationCurrent team HeerenveenNumber 44Youth career0000–2013 HeerenveenSenior career*Years Team Apps (Gls)2013–2014 Heerenveen 0 (0)2014–2018 NAC Breda 6 (0)2018–2019 Foggi...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Riviera del Brenta – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message) The Riviera del Brenta is an area of the Metropolitan City of Venice of particular tourist-cultural interest due to the great architectur...
Former jihadist organisation Caucasus EmirateИмарат КавказLeadersDokka Umarov †[1]Aliaskhab Kebekov †Magomed Suleimanov †Foundation7 October 2007; 16 years ago (7 October 2007)[2]DissolvedAugust 2016; 7 years ago (August 2016)Active regionsNorth Caucasus, West AsiaIdeologyPan-Islamism[3]Salafist-Takfiri Jihadism[4][5]Separatism[4]Islamic fundamentalism[4]Anti-imp...
Untuk peristiwa sejarah itu sendiri, lihat Empat hari di Naples. The Four Days of Naplesposter film ItaliaSutradaraNanni LoyProduserGoffredo LombardoDitulis olehCarlo BernariPasquale Festa CampanileMassimo FranciosaNanni LoyVasco PratoliniPemeranRegina BianchiAldo GiuffrèPenata musikCarlo RustichelliSinematograferMarcello GattiPenyuntingRuggero MastroianniDistributorMetro Goldwyn Mayer di AS/Titanus di ItaliaTanggal rilis 16 November 1962 (1962-11-16) Durasi124 menitNegaraItaliaBa...
Curves of genus > 1 over the rationals have only finitely many rational points Faltings's theoremGerd FaltingsFieldArithmetic geometryConjectured byLouis MordellConjectured in1922First proof byGerd FaltingsFirst proof in1983GeneralizationsBombieri–Lang conjectureMordell–Lang conjectureConsequencesSiegel's theorem on integral points Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field Q {\displaystyle \mathbb {Q} } of r...