In mathematics, especially in the area of algebra known as ring theory, an Ore extension, named after Øystein Ore, is a special type of a ring extension whose properties are relatively well understood. Elements of a Ore extension are called Ore polynomials.
Then the Ore extension, also called a skew polynomial ring, is the noncommutative ring obtained by giving the ring of polynomials a new multiplication, subject to the identity
.
If δ = 0 (i.e., is the zero map) then the Ore extension is denoted R[x; σ]. If σ = 1 (i.e., the identity map) then the Ore extension is denoted R[ x, δ ] and is called a differential polynomial ring.
Goodearl, K. R.; Warfield, R. B. Jr. (2004), An Introduction to Noncommutative Noetherian Rings, Second Edition, London Mathematical Society Student Texts, vol. 61, Cambridge: Cambridge University Press, ISBN0-521-54537-4, MR2080008
Azeddine Ouarit (1994) A remark on the Jacobson property of PI Ore extensions. (Une remarque sur la propriété de Jacobson des extensions de Ore a I.P.) (French) Zbl 0819.16024. Arch. Math. 63, No.2, 136-139 (1994). https://zbmath.org/?q=an:00687054